• Title/Summary/Keyword: contact lenses

Search Result 217, Processing Time 0.022 seconds

Polymerization and Preparation of Functional Ophthalmic Material Containing Carbon Nanoparticles

  • Lee, Min-Jae;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.452-458
    • /
    • 2018
  • This research is conducted to create a functional hydrogel ophthalmic lens containing nanoparticles. Carbon nanoparticles and PEGMEMA are used as additives for the basic combination of HEMA, MA, and MMA, and the materials are copolymerized with EGDMA as the cross-linking agent and AIBN as the thermal initiator. The hydrogel lens is produced using a cast-mold method, and the materials are thermally polymerized at $100^{\circ}C$ for an hour. The polymerized lens sample is hydrated in a 0.9 % saline solution for 24 hours before the optical and physical characteristics of the lens are measured. The refractive index, water content, contact angle, light transmittance, and tensile strength are measured to evaluate the physical and optical characteristics of the hydrogel lens. The refractive index, water content, contact angle, UV-B light transmittance, UV-A light transmittance, visible light transmittance, tensile strength and breaking strength of the hydrogel lens polymer are 1.4019~1.4281, 43.05~51.18 %, $31.95{\sim}68.61^{\circ}$, 21.69~58.11 %, 35.59~84.26 %, 45.85~88.06 %, 0.1075~0.1649 kgf and 0.1520~0.2250 kgf, respectively. The results demonstrate an increase in refractive index, tensile strength and breaking strength and a decrease in contact angle and light transmittance. Furthermore, the visible light transmissibility is significantly increased at PEG 10 %. It is clear that this material can be used for high-performance ophthalmic lenses with wettability, ultraviolet ray blocking effect, and tensile strength.

A comparative study of contact lens wearer with dry-eye patient on tear function tests (콘텐트렌즈 착용자와 건성안 환자의 눈물 검사에 대한 비교 연구)

  • Kim, Soon-Ae;Seo, Eun-Sun;Lee, Young-Hwan;Kim, Ja-Min
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.2
    • /
    • pp.301-312
    • /
    • 2004
  • This study was performed to compare the relationship between contact lens wearer and dry-eye patient. In this study, TBUT, SIT, TTT, Rose bengal staining and McMonnies dry eye symptom questionnaire were performed as a baseline. With the base data, the subjects were classified to 3 groups : 3S patients who have dry eye signs and symptoms, 38 patients who are wearing soft contact tenses, 35 subjects who have health eyes and never worn on a contact lenses as control subjects. Contact lens wearers were divided into 3 groups according to the duration of contact lens wear. There were no significant differences in TBUT, STT, TTT, Rose-bengal staining and McMonnies dry eye symptom questionnaire result between contact lens wearer group and dry eye patients group. We suggest that there are similarities in tear function tests between the dry-eye patient and the contact lens wearer.

  • PDF

Profile Measurements of Micro-aspheric Surfaces Using an Air-bearing Stylus with a Microprobe

  • Shibuya, Atsushi;Gao, Wei;Yoshikawa, Yasuo;Ju, Bing-Feng;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.26-31
    • /
    • 2007
  • A novel scanning probe measurement system was developed to enable precise profile measurements of microaspheric surfaces. An air-bearing stylus with a microprobe was used to perform the surface profile scanning. The new system worked in a contact mode and had the capability of measuring micro-aspheric surfaces with large tilt angles and complex profiles. Due to limitations resulting from the contact mode, such as possible damage caused by the contact force and lateral resolution restrictions from the curvature of the probe tip, several system improvements were implemented. An air bearing was used to suspend the shaft of the probe to reduce the contact force, enabling fine adjustments of the contact force by changing the air pressure. The movement of the shaft was measured by a linear encoder with a scale attached to the actual shaft to avoid Abbe errors. A $50-{\mu}m-diameter$ glass sphere was bonded to the tip of the probe to improve the lateral resolution of the system. The maximum contact force of the probe was 10 mN. The shaft was capable of holding the probe continuously if the contact force was less than 40 mN, and the resolution of the probe could be as high as 10 nm, The performance of the new scanning probe measurement system was verified by experimental data.

The Comparison of Lens Movement by the Fitting States of Soft Contact Lenses in Normal and Dry Eyes (정상안과 건성안에서 피팅상태에 따른 각막에서의 소프트렌즈 움직임 비교)

  • Jung, Da I;Lim, Shin Kyu;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.1
    • /
    • pp.21-30
    • /
    • 2011
  • Purpose: The study was performed to compare the differences in lens rotation, lens movement by blinking and lens centration with alignment or steep fitting of soft contact lens in normal and dry eyes. Methods: Total 40 eyes (aged 20~30 years) were classified into the normal (n=20) or dry eye group (n=20) by the diagnosis methods for dry eyes and worn soft contact lens (polymacon material) with alignment fitting or steep fitting. Lens rotation, lens movement by blinking and lens centration were separately measured immediately after lens wearing and after stabilization of tear film and compared by fitting states of soft contact lenses. Results: With steep fitting of soft contact lens in dry eyes, averaged lens rotation immediately after lens wearing was not significantly different from that of the normal eye group with alignment fitting however, lens rotation after stabilization in dry eyes was significantly larger than that in normal eyes. Any significant difference in lens movement by blinking was not shown in normal eyes. However, lens movement by blinking in dry eyes was increased with steep fitting. The range of lens centration on cornea in normal eyes with alignment fitting was more vertically distributed. On the other hand, the range of lens centration on cornea in dry eyes with alignment fitting was more horizontally distributed. Lens centration was shown to be changed by stabilization of tear film. That is, lens centrations were somewhat vertically widespread immediately after lens wearing and restrictively distributed in horizontal direction, respectively, with steep fitting in dry eyes. Conclusions: These results suggested that lens movements and centration in dry eyes were different from those of normal eyes. Especially, those differences between normal and dry eyes were much bigger with steep fitting of soft contact lenses. Thus, those differences should be considered for the comfortable and safe fitting of soft contact lens in dry eyes.

An Investigation of Eye Inconvenience due to the Wearing and Management of Lens of Female University Students (여대생의 렌즈 착용과 관리 행위에 따른 눈의 불편감 조사)

  • Jang, Hyun-Jung;Jeon, Hye Won
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.183-190
    • /
    • 2020
  • This study was designed to investigate the current state of lens wearing and care, and to investigate eye discomfort according to the care method. Data of 209 female college students wearing lenses for more than 1 year were analyzed using the SPSS / WIN 22.0 program. 40.2% of female students wear lenses every day and 97.1% wear all day. However, only 45.4% of students washed it daily, and only 17.7 % used protein remover during wash, which resulted in poor management. 98.1% of students complained of discomfort due to the lens, and the Ocular Surface Index (OSDI) scored 42.88 ± 15.25, which was classified as a severe dry eye and threatened eye health. Therefore, it is necessary to improve students' awareness of lens management, and periodical lens inspection and management education are needed.

Polymerization and Optical Properties of Polymers with High Tensile Strength Added Isocyanate Group

  • Sung, A-Young;Ye, Ki-Hun
    • Journal of Integrative Natural Science
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Polyurethane resin containing isocyanate is marked by excellent tensile and mechanical strengths and this test aims to gauge its applicability as a medical high polymer. Tris [2-(acryloyloxy)ethyl]isocyanurate and hexamethylenediisocyanate were added to a basic mixing ratio of HEMA (2-hydroxyethyl methacrylate), MMA (methyl methacrylate), NVP (n-vinyl-2-pyrrolidone) and crosslink agent, EGDMA (ethylene glycol dimethacrylate) with increasing proportions and copolymerized respectively. Also, the basic physical properties of the polymerized high polymers including refraction rate, tensile strength, light transmission and water content were measured to confirm that they are appropriate as hydrogelcontact lenses. After measuring the physical properties of high performance polymers produced by adding tris [2-(acryloyloxy) ethyl]isocyanurate, it was found that the average tensile strengths of sample TRIS1 to TRIS10 were between 0.285 and 0.612 kgf, while the average values of refractive index were ranged from 1.441 to 1.449 with water content from 30.00 to 37.35%.The measurement of physical properties of the copolymers generated by adding hexamethylenediisocyanate showed that the average tensile strength of sample HEXA1 to HEXA10 ranged from 0.267 to 1.742 kgf, the refractive index ranged from 1.443 to 1.475 and water contents were in the range of 21.22 to 35.58%. In all combinations the transmission rates satisfied the transmittance of general hydrogel contact lenses. From theresults, it is possible to conclude that the produced copolymers can be used as contact lens materials with excellent tensile strength.

Presbyopic Spectacle and Monovision for Reading Performance Before Adaptation (노안안경과 모노비젼 콘택트렌즈 착용 후 적응 전 읽기 능력 평가)

  • Chu, Byoung Sun;Hwang, Jeong Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.3
    • /
    • pp.263-268
    • /
    • 2010
  • Purpose: Eye movements and fixation ability are an important procedure to obtain external information and essential means of clear vision. The purpose of this study was to determine the reading performance such as reading time and number of fixations when random text was viewed at varying distances. Methods: Twenty two presbyopes were participated. All subjects were screened for their suitability to participate in the study by clinical examination, and none of the participants had previously worn contact lenses and no previous experience of wearing any types of presbyopic vision correction except single vision. The reading time and number of fixations were recorded using eye tracker while each subjects was waring four vision corrections which included single vision for distance (SV), bifocal spectacle lenses (BIF), progressive addition lenses (PAL), and monovision (MV). The reading material was presented at distance and near distance. Results: Reading time and number of fixations for near stimulus were significantly different among vision correction used in this study (p<0.001). In particular, wearing SV required longer reading time and produced longer fixation duration for near text. However, reading distance text was similarity performed across vision corrections tested and there was no statistical difference found for either reading time and number of fixations. Conclusions: Wearing presbyopic vision correction is advantageous for reading task of near stimuli, but not having near correction such as wearing SV could result in longer reading time and higher number of fixation due to lacks of accommodative ability for near task. For the future studies, it would be interesting to examine the performance of reading both at adapted and unadapted stages as examining only unadapted wearers was limitation of this study.

Thermal Deformation Measurement Spherical Glasses Lens Using ESPI (ESPI를 이용한 안경용 렌즈의 열변형 측정)

  • Kim, Koung-Suk;Jang, Ho-Sub;Kim, Hyun-Min;Yang, Seung-Pill
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.137-143
    • /
    • 2008
  • The spherical glasses lenses are typically classified into two groups such as (+) diopter lens and (-) diopter lens by the refractive power index. The thermal deformation of a lens is occurred by external heat source and is changed respected to the diopter of a lens. In this paper, the thermal deformation of spherical glasses lenses were quantitatively measured by using ESPI (electronic speckle pattern interferometry) which has an advantage that the non-contact, non-destructive and precise deformation measurement is available due to the coherency characteristic. The temperature changes were measured by IR camera. It makes experiments over 14 types of the plastic glasses lenses. From the results, it was confirmed that the larger diopter lens showed the less thermal deformation in case of the (+) diopter lens. On the other hand, the thermal deformation of the (-) diopter lens was measured with uniform pattern when the same temperature changes were applied. Also, it was found that the thermnal deformation of the (+) diopter lens is less than that of the (-) diopter lens. Therefore, it is expected that when the thermal deformation is occurred to the various types of the lens, the variation of the focal length caused by the thermal distortion of a lens would be measured quantitatively.

ANALYSIS OF ELECTROWETTING DYNAMICS WITH LEVEL SET METHOD AND ASSESSMENT OF PROPERTY INTERPOLATION METHODS (레벨셋 기법을 이용한 전기습윤 현상의 동적 거동에 대한 해석 및 물성 보간 방법에 대한 고찰)

  • Park, J.K.;Kang, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.551-555
    • /
    • 2010
  • Electrowetting is a versatile tool to handle tiny droplets and forms a backbone of digital microfluidics. Numerical analysis is necessary to fully understand the dynamics of electrowetting, especially in designing electrowetting-based devices, such as liquid lenses and reflective displays. We developed a numerical method to analyze the general contact-line problems, incorporating dynamic contact angle models. The method is based on the conservative level set method to capture the interface of two fluids without loss of mass. We applied the method to the analysis of spreading process of a sessile droplet for step input voltages and oscillation of the droplet for alternating input voltages in electrowetting. The result was compared with experimental data. It is shown that contact line friction significantly affects the contact line motion and the oscillation amplitude. The pinning process of contact line was well represented by including the hysteresis effect in the contact angle models. In level set method, in the mean time, material properties are made to change smoothly across an interface of two materials with different properties by introducing an interpolation or smoothing scheme. So far, the weighted arithmetic mean (WAM) method has been exclusively adopted in level set method, without complete assessment for its validity. We viscosity, thermal conductivity, electrical conductivity, and permittivity, can be an alternative. I.e., the WHM gives more accurate results than the WAM method in certain circumstances. The interpolation scheme should be selected considering various characteristics including type of property, ratio of property of two fluids, geometry of interface, and so on.

  • PDF

Comparison and Application of Deep Learning-Based Anomaly Detection Algorithms for Transparent Lens Defects (딥러닝 기반의 투명 렌즈 이상 탐지 알고리즘 성능 비교 및 적용)

  • Hanbi Kim;Daeho Seo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.1
    • /
    • pp.9-19
    • /
    • 2024
  • Deep learning-based computer vision anomaly detection algorithms are widely utilized in various fields. Especially in the manufacturing industry, the difficulty in collecting abnormal data compared to normal data, and the challenge of defining all potential abnormalities in advance, have led to an increasing demand for unsupervised learning methods that rely on normal data. In this study, we conducted a comparative analysis of deep learning-based unsupervised learning algorithms that define and detect abnormalities that can occur when transparent contact lenses are immersed in liquid solution. We validated and applied the unsupervised learning algorithms used in this study to the existing anomaly detection benchmark dataset, MvTecAD. The existing anomaly detection benchmark dataset primarily consists of solid objects, whereas in our study, we compared unsupervised learning-based algorithms in experiments judging the shape and presence of lenses submerged in liquid. Among the algorithms analyzed, EfficientAD showed an AUROC and F1-score of 0.97 in image-level tests. However, the F1-score decreased to 0.18 in pixel-level tests, making it challenging to determine the locations where abnormalities occurred. Despite this, EfficientAD demonstrated excellent performance in image-level tests classifying normal and abnormal instances, suggesting that with the collection and training of large-scale data in real industrial settings, it is expected to exhibit even better performance.