• 제목/요약/키워드: contact element

검색결과 1,734건 처리시간 0.036초

고속 주축에서 클램핑력 및 회전수 변화에 따른 주축 인터페이스 접촉률 변화에 관한 연구 (A Study on the Contact Interval in the Main Spindle Interface of High Speed Spindle according to Variation of Clamping Force and Rotational Speed)

  • 황영국;조영덕;이춘만;정원지
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1749-1752
    • /
    • 2005
  • High speed machining has become the main issue of metal cutting. Due to increase of the rotational speed of the spindle, problems, such as the run-out errors, reduced stiffness, must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an evaluation of contact interval which is the interface between spindle taper hole and tool holder shank of the spindle. Finite element analysis is performed by using a commercial code ANSYS according to variation of clamping forces and rotational speeds. This paper proposed fit tolerance in order to evaluate the effects of clamping force and rotational speed on the contact interval in the spindle interface. From the finite element results, it has been shown that the rotational speed rather than clamping force mostly influence on the variation of the contact interval.

  • PDF

고속 주축에서 클램핑력 및 회전수 변화에 따른 주축 인터페이스 접촉률 변화에 관한 연구 (1) (A Study on the Contact Interval in the Main Spindle Interface of High Speed Spindle according to Variation of Clamping Force and Rotational Speed (1))

  • 황영국;정원지;이춘만
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.147-155
    • /
    • 2006
  • High speed machining has become the main issue of metal rutting. Due to increase of the rotational speed of the spindle, problems, such as the run-out errors, reduced stiffness, must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an evolution of contact interval which is the interface between spindle taper hole and tool holder shank of the spindle. Finite element analysis is performed by using a commercial code ANSYS according to variation of clamping forces and rotational speeds. This paper proposed fit tolerance in order to evaluate the effects of clamping force and rotational speed on the contact interval in the spindle interface. From the finite element results, it has been shown that the rotational speed rather than clamping force mostly influence on the variation of the contact interval.

이중복합봉 정수압 압출시 접합면 거동에 관한 연구 (A Bonding Surface Behavior of Bi-metal Bar through Hydrostatic Extrusion)

  • 박훈재;나경환;조남선;이용신
    • 소성∙가공
    • /
    • 제7권1호
    • /
    • pp.66-71
    • /
    • 1998
  • The present study is concerned with the hydrostatic extrusion process of copper-clad aluminium bar to investigate the bonding conditions as well as the basic flow characteristics. Considering the bonding mechanism of bi-metal contact surface as cold pressure welding the normal pressure and the contact surface expansion are selected as process parameters governing the bonding conditions, in this study the critical normal pressure required for the local extrusion-the protrusion of virgin surfaces by the surface expansion at the interface-is obtained using a slip line method and is then used as a criteron for the bonding. A rigid plastic finite element method is used to analyze the steady state extrusion process. The interface profile of bi-metal rod is predicted by tracking the paths of two particles adja-process. The interface profile of bi-metal rod is predicted by tracking the paths of two particles adja-cent to interface surface. The contact surface area ration and the normal pressure along the interface are calculated and compared to the critical normal pressure to check bonding. It is found that the model predictions are generally in good agreement with the experimental observations. The compar-isons of the extrusion pressure and interface profile by the finite element with those by experi-ments are also given.

  • PDF

이동하중을 받는 일정장력이 작용하는 가선계의 동적해석 (Dynamic Analysis of Catenary System Subjected to Moving Load)

  • 이규호;조용현;정진태
    • 대한기계학회논문집A
    • /
    • 제35권1호
    • /
    • pp.99-106
    • /
    • 2011
  • 본 논문에서는 유한요소법을 이용하여 일정 장력을 받고 있는 가선계 모델에 대한 동적 접촉에 의한 파동 전파와 반사에 대한 연구를 연구하였다. 장력을 고려하기 위하여 새롭게 정의된 3 차원 빔 모델을 정의하였으며 이를 이산화하여 유한요소모델을 수립하였다. 또한 동적 접촉 해석을 위하여 라그랑지 승수법을 이용한 접촉 해석 모델을 정의하여 가선계와 질점하중간의 접촉해석을 수행하였다. 이동하중의 속도를 증가시키면서 발생하는 접촉력의 변화를 관찰하여 파동의 전파와 반사에 대한 수치적인 해를 구하였으며, 이를 이론적인 해와 비교하여 해석모델의 검증을 수행하였다.

비접촉 원자간력 현미경의 탐침 캔틸레버 진동 특성 및 측정 성능 평가 (Vibration Characteristics and Performance of Cantilever for Non-contact Atomic Force Microscopy)

  • 박준기;권현규;홍성욱
    • 한국소음진동공학회논문집
    • /
    • 제14권6호
    • /
    • pp.495-502
    • /
    • 2004
  • This paper presents the vibration analysis and the performance evaluation of cantilevers with probing tips for non-contact scanning probe microscopy. One of the current issues of the scanning probe microscopy technology is to increase the measurement speed, which is closely tied with the dynamic characteristics of cantilevers. The primary concern in this research is to investigate the relation between the maximum possible speed of non-contact scanning probe microscopy and the dynamic characteristics of cantilevers. First, the finite element analysis is made for the vibration characteristics of various cantilevers in use. The computed natural frequencies of the cantilevers are in good agreement with measured ones. Then, each cantilever is tested with topographic measurement for a standard sample with the scanning speed changed. The performances of cantilevers are analyzed along with the natural frequencies of cantilevers. Experiments are also performed to test the effects of how to attach cantilevers in the piezo-electric actuator. Finally, measurement sensitivity has been analyzed to enhance the performance of scanning probe microscopy.

레일표면손상이 접촉피로수명에 미치는 영향 (Effect of Rail Surface Damage on Contact Fatigue Life)

  • 서정원;이동형;함영삼;권성태;권석진;최하영
    • 한국정밀공학회지
    • /
    • 제29권6호
    • /
    • pp.613-620
    • /
    • 2012
  • Rails are subjected to damage from rolling contact fatigue, which leads to defects such as cracks. Rolling contact fatigue damages on the surface of rail such as head check, squats are one of growing problems. Another form of rail surface damage, known as "Ballast imprint" has become apparent. This form of damage is associated with ballast particles becoming trapped between the wheel and the surface of rail. These defects are still one of the key reasons for rail maintenance and replacement. In this study, we have investigated whether the ballast imprint is an initiator of head check type cracks and effect of defect size using Finite element analysis. The FE analysis were used to investigate stresses and strains in subsurface of defects according to variation of defect size. Based on loading cycles obtained from FE analysis, fatigue analysis for each point was carried out.

베어링 캡 유한 요소 해석 설계 방법 (Design Methodology of Main Bearing Cap by a Finite Element Analysis)

  • 양철호;한문식
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.80-86
    • /
    • 2009
  • Main bearing cap is one of the essential structural elements in internal combustion engine. Main bearing cap guides and holds the crankshaft, withstanding the full combustion and inertia loads of the engine. A seamless design methodology using FEA has been proposed to produce a reliable design of main bearing cap. A Levy's thick cylinder model was applied to calculate the contact pressure between bearing shell and housing bore. A calculated contact pressure at housing bore is within the allowed limit comparing with that from bearing shell model. An adequate FEA model was suggested to obtain reliable solutions for the durability of main bearing cap. 3D global model consists of engine bulkhead, main bearing cap, and bolts. Sub-model consisting of cap and part of bolts is used to get detailed solution of main bearing cap. A very careful contact modeling practice is needed to resolve the convergence problems frequently encountering during combined geometric and material non-linear problems. A proposed methodology has been applied to the main bearing cap model successfully and obtained reliable stress results and fatigue safety factors.

비접촉 원자간력 현미경의 탐침 외팔보 진동특성에 따른 성능 평가 (Performance Evaluation of Non-contact Atomic Force Microscopy Due to Vibration Characteristics of Cantilever)

  • 박준기;권현규;홍성욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.263-268
    • /
    • 2003
  • This paper presents a result of performance evaluation fur non-contact scanning probe microscopy with respect to the vibration characteristics of cantilevers with tips. One of the current issues of the scanning probe microscopy technology is to increase the measurement speed, which is closely tied with the dynamic characteristics of cantilevers. The primary concern in this research is to investigate the relation between the maximum possible speed of non-contact scanning probe microscopy and the dynamic characteristics of cantilevers. First, the finite element analysis is made fur the vibration characteristics of various cantilevers in use. The computed natural frequencies of the cantilevers are in good agreement with measured ones. Then, each cantilever is tested with topographic measurement for a standard sample with the scanning speed changed. The performances of cantilevers are analyzed along with the natural frequencies of cantilevers. Experiments are also performed to test the effects of how to attach cantilevers in the piezo-electric actuator. Finally, measurement sensitivity has been analyzed to enhance the performance of scanning probe microscopy.

  • PDF

Effect of stacking sequence of the bonded composite patch on repair performance

  • Beloufa, Hadja Imane;Ouinas, Djamel;Tarfaoui, Mostapha;Benderdouche, Noureddine
    • Structural Engineering and Mechanics
    • /
    • 제57권2호
    • /
    • pp.295-313
    • /
    • 2016
  • In this study, the three-dimensional finite element method is used to determine the stress intensity factor in Mode I and Mixed mode of a centered crack in an aluminum specimen repaired by a composite patch using contour integral. Various mesh densities were used to achieve convergence of the results. The effect of adhesive joint thickness, patch thickness, patch-specimen interface and layer sequence on the SIF was highlighted. The results obtained show that the patch-specimen contact surface is the best indicator of the deceleration of crack propagation, and hence of SIF reduction. Thus, the reduction in rigidity of the patch especially at adhesive layer-patch interface, allows the lowering of shear and normal stresses in the adhesive joint. The choice of the orientation of the adhesive layer-patch contact is important in the evolution of the shear and peel stresses. The patch will be more beneficial and effective while using the cross-layer on the contact surface.

실리콘 중공 가스켓의 구조적 특성에 관한 연구 (A Study on the Structural Characteristics of the Hollow Casket made of Silicon Rubber)

  • 이승하;이태원;심우진
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2044-2051
    • /
    • 2002
  • In this paper, the deformed shape, the contact forces and the load-displacement curves of the real hollow gasket made of silicon rubber are analyzed using a commercial finite element program MARC. In the numerical analysis, the silicon rubber is assumed to have the properties of the geometric and material nonlinearity and the incompressibility, and the hyperelastic constitutive relations of that material are represented by the generalized Mooney-Rivlin and Ogden models. The outer frictional contact between the hollow gasket and the groove of rigid container and the inner self-contact of the hollow gasket are taken into account in the course of numerical computation. Experiments are also performed to obtain the material data for numerical computation and to show the validity of the mechanical deformation of the hollow gasket, resulting in good agreements between them.