In recent years, there has been increasing interest in the senior people in our aging society. This paper will give an account of the current cases of senior shift. The first section of this paper will examine a conceptual approach based on a literature review and analyze case studies of senior shifts by national fashion and beauty brands. It will be helpful for the 'New Senior' consumer group, which in emerging in an aging society. The research methods applied were a literature review and a case study, and a database search was conducted to determine the current situation of global brands. The results of the literature review showed that seniors can be classified into four types based on their physical aging condition and emotional tendency: Prime Senior, Smart Senior, Rational Senior, and Slump Senior. The first thing that needs to be said is that the Prime Senior type is found commonly in as a way to appoint a senior model in order to switch brand image. Cases of the Smart Senior type appeared only in the beauty field, which attempted multilateral approaches such as launching products exclusively for seniors and offering make-up services after improving the usability and functionality in response to senior consumers'needs. However, as no cases of senior shift were found for the Rational Senior and Slump Senior types in either the fashion or beauty field, future studies should explore the market approaches used in those categories.
건설공사의 품질을 확보하고 예산의 절감을 도모하는 등 건설 프로젝트의 성공 여부를 판단하기 위해서는 객관적인 평가지표와 그에 대한 투명성 확보가 필요하다. 건설부문을 포함한 공공사업의 경우 대규모 예산투입이 이루어지고 있지만 그 결과물로 인한 편익을 산정하기 어려울 경우가 많아 공공사업의 효율성과 효용성이 떨어진다고 인식되고 있다. 따라서 본 연구에서는 500억 원 이상의 공공공사 중 사후평가를 실시하는 시설물에 대한 소비자 만족도를 정량화하는 것을 범위로 하여, 공공공사 사후평가 시 체계적이고 정량적인 측정이 가능할 수 있도록 주민 호응도와 사용자 만족도 항목을 중심으로 하는 사후평가 측정기준을 제안하고자 한다.
This study investigated a conceptual framework of fashion consumers' purchase decision-making styles related to behavioral typology of personality. In response to critiques on fragmented and varied use of personality measurements, this study selectively tested and verified an alternative typological model of Enneagram value systems and self-construal levels that could explain the fashion consumers' typological propensities in purchase decision-making. One hundred-item measurement scale for the fashion consumers' purchase decision-making styles was developed based on the extensive literature. Three groups of fashion major students, a total of 107 participants, who respectively participated in 2-hour-long Enneagrams seminars from spring 2013 to fall 2014, were asked to re-sentence the question items to clearly reflect their Enneagram personality to make purchase decisions. Participants described their propensities in their own words about the most comfortable state during the 5-step processes of the purchase decision making process. The revised scale was distributed to 423 participants in January 2016, and the results verified the group differences in various styles in the process of purchase decision-making corresponding to the typological variables discussed in Enneagram. The correlation between Enneagram core values embodied by fashion consumers during the stages of purchase decision-making in extensive levels of self-construal were verified in the context of their fashion decision making. This study found the possibility of the typological approach toward Enneagram types of personality to be applicable to explain and predict peculiar facets of fashion consumers' purchase decision-making styles.
본 연구에서는 '기업의 문화예술 지원 동기에 따라 기업의 사회 공헌 이미지에 대한 인식은 차이를 보일 것'이라는 연구가설을 검증하였다. 전국의 주요 공연장 및 미술관을 중심으로 310부의 설문지를 배부하고 그 결과를 구조방정식 모형을 통해 검증한 결과, 고객 가치 동기가 기업의 사회 공헌 이미지 평가에 정적(+)인 영향을 주고, 기업 가치 동기가 기업의 사회 공헌 이미지 평가에 부적(-)인 영향 주는 것을 알 수 있다. CSR과 CSV를 포함한 기업의 사회공헌 동기의 유형에 따라 소비자가 인식하는 기업의 평가는 어떻게 달라질 것인지를 검증하기 위해 집단 간 비교를 실시하였다. CSR 집단에 비해 CSV 집단에서 고객 가치 동기가 기업 이미지에 미치는 영향력이 큰 것을 알 수 있다. 그리고, CSV 집단에 비해 CSR 집단에서 기업 가치 동기가 기업 이미지에 미치는 영향력이 큰 것을 알 수 있다.
본 연구는 한국 커피산업에서 경쟁력 있는 기업인 스타벅스의 성장배경을 분석하고자 하였다. 이에 STEEP 분석기법을 활용하여 기업이 보유한 각각의 경쟁력을 분석하고 결과를 경쟁력 요소를 도출하고자 하였다. 연구 결과는 다음과 같다. 사회적인 측면을 살펴보면 경제성장에 따른 생활수준이 높아져옴에 따라 여성에 경제적 활동이 기폭제 역할을 해왔다. 또한 과거 커피문화의 경우 자판기 믹스커피 문화에서 문화공간적인 측면을 강조하는 소비시장으로 변모함을 간파해온 스타벅스 대응전략이 유효하였다. 기술적인 측면을 살펴보면 프랜차이점 원두 맛에 일률적 표준화를 확보하여 편차를 줄여왔으며 매장을 직영으로 운영함으로서 표준화된 운영 시스템 운영이 가능하였다. 그리고 경제적인 측면을 살펴보면, 커피 소비시장이 확장세를 이어옴에 따라 시장전체 크기 또한 비례적으로 커져 안정적인 성장환경이 형성되어왔다는 점이다. 마지막으로 환경적, 정책적 측면을 살펴보면, 최근 친환경성을 강조한 정책방향을 간파하고 시장 선두기업으로서 친환경 기업으로서의 정책 활동에 기초한 마케팅 전략방향이 주요해왔다는 점이다.
Muhammad Umer Farooq;Mustafa Latif;Waseemullah;Mirza Adnan Baig;Muhammad Ali Akhtar;Nuzhat Sana
International Journal of Computer Science & Network Security
/
제23권9호
/
pp.1-7
/
2023
Demand prediction is an essential component of any business or supply chain. Large retailers need to keep track of tens of millions of items flows each day to ensure smooth operations and strong margins. The demand prediction is in the epicenter of this planning tornado. For business processes in retail companies that deal with a variety of products with short shelf life and foodstuffs, forecast accuracy is of the utmost importance due to the shifting demand pattern, which is impacted by an environment of dynamic and fast response. All sectors strive to produce the ideal quantity of goods at the ideal time, but for retailers, this issue is especially crucial as they also need to effectively manage perishable inventories. In light of this, this research aims to show how Machine Learning approaches can help with demand forecasting in retail and future sales predictions. This will be done in two steps. One by using historic data and another by using open data of weather conditions, fuel, Consumer Price Index (CPI), holidays, any specific events in that area etc. Several machine learning algorithms were applied and compared using the r-squared and mean absolute percentage error (MAPE) assessment metrics. The suggested method improves the effectiveness and quality of feature selection while using a small number of well-chosen features to increase demand prediction accuracy. The model is tested with a one-year weekly dataset after being trained with a two-year weekly dataset. The results show that the suggested expanded feature selection approach provides a very good MAPE range, a very respectable and encouraging value for anticipating retail demand in retail systems.
Muhammad Umer Farooq;Mustafa Latif;Waseem;Mirza Adnan Baig;Muhammad Ali Akhtar;Nuzhat Sana
International Journal of Computer Science & Network Security
/
제23권8호
/
pp.210-216
/
2023
Demand prediction is an essential component of any business or supply chain. Large retailers need to keep track of tens of millions of items flows each day to ensure smooth operations and strong margins. The demand prediction is in the epicenter of this planning tornado. For business processes in retail companies that deal with a variety of products with short shelf life and foodstuffs, forecast accuracy is of the utmost importance due to the shifting demand pattern, which is impacted by an environment of dynamic and fast response. All sectors strive to produce the ideal quantity of goods at the ideal time, but for retailers, this issue is especially crucial as they also need to effectively manage perishable inventories. In light of this, this research aims to show how Machine Learning approaches can help with demand forecasting in retail and future sales predictions. This will be done in two steps. One by using historic data and another by using open data of weather conditions, fuel, Consumer Price Index (CPI), holidays, any specific events in that area etc. Several machine learning algorithms were applied and compared using the r-squared and mean absolute percentage error (MAPE) assessment metrics. The suggested method improves the effectiveness and quality of feature selection while using a small number of well-chosen features to increase demand prediction accuracy. The model is tested with a one-year weekly dataset after being trained with a two-year weekly dataset. The results show that the suggested expanded feature selection approach provides a very good MAPE range, a very respectable and encouraging value for anticipating retail demand in retail systems.
온라인 쇼핑 플랫폼은 개인화 추천 시스템을 활용하여 소비자의 개인 정보와 행동 데이터를 수집, 분석 및 마이닝을 통해 소비자에게 맞춤형 추천 서비스를 제공함으로써 소비자의 잠재적인 쇼핑 욕구를 자극한다. 본 연구는 S-O-R 모델을 기반으로 온라인 쇼핑 추천이 구매의도에 미치는 영양을 분석하기 위하여 시스템 품질인 다양성과 정확성, 정보 품질인 설득력과 완전성을 외부 자극으로 설정하고, 신뢰 및 지각된 가치에 따른 소비자의 심리상태 하 유기체로 설정하여 구매의도 간에 관계를 탐구하였다. 온라인 쇼핑 플랫폼을 이용하는 소비자를 대상으로 설문조사를 실시하였다. 분석결과는 개인화 추천 시스템의 품질과 정보 품질이 신뢰와 지각된 가치에 미치는 영향에 대한 가설이 모두 채택되었다. 신뢰가 시스템 품질, 정보 품질에 대한 구매의도와의 관계에서 매개역할을 확인하였으며 지각된 가치는 정보 품질에 대한 구매의도와의 관계에서 매개역할을 확인하였다. 추천 시스템이 제공하는 콘텐츠는 소비자 경험을 개선하고 소비자의 수용 정도를 높일 수 있는 방향으로 설계되어야 한다는 시사점을 도출하였다.
The domestic swine industry is currently facing a threat due to the recent increase in pork imports. This study aims to determine what factors influence consumers' intention to consume imported pork and suggest measures to support the domestic pork industry. To achieve this, we analyzed data from the Korea Rural Economic Institute's Food Consumption Behavior Survey using a binary logistic regression model. The results revealed that a higher intention to consume imported pork is linked to a higher intention to consume imported rice, purchasing meat online, frequent purchases of HMR, and procuring U.S. beef, especially among urban residents. On the other hand, a lower intention to consume imported pork is associated with a higher awareness of animal welfare certification, frequently dining out, and older age. Based on these findings, we propose the following response measures for the domestic swine industry: implementing educational programs, marketing, and advertising specifically targeting urban residents to improve their perception of domestic agricultural products; enhancing price competitiveness through distribution optimization; and developing policies to promote the use of domestic pork as an ingredient in processed foods.
본 연구는 한류 콘텐츠 소비 시 나타나는 한국, 일본, 미국의 감정 반응을 통해 국가별 소비 성향을 규명하는 데 목적이 있다. 방대해진 텍스트 리뷰를 이용한 감정 분석 연구가 주목받고 있고, 콘텐츠 수요에 환경적 특성이 주요한 영향을 주고 있음에도, 국가별 감정 반응 차이에 대한 연구는 거의 이루어지지 않고 있다. 따라서 본 연구에서는, Russell(1980)이 제시한 감정 원형 모델을 사용하여 한국형 판타지 멜로드라마 <도깨비>에 대한 국가별 감정 단어의 변수 중요도 및 단어 간 연관을 비교하였다. 우선, 2017년 1월 26일부터 3월 26일까지 2달간의 텍스트 리뷰를 수집하였다. 둘째, 수집한 데이터로부터 Russell의 감정 모델에 해당하는 감정 단어를 선별하였다. 셋째, 선별한 데이터에 랜덤 포레스트를 적용하여 변수 중요도를 평가하였다. 넷째, Russell 축에 따른 주요 감정 단어 간 연관성을 비교하였다. 마지막으로 테스트 데이터를 이용하여 학습된 모델의 정확성을 측정하였다. 실험 결과, 국가별 감정 단어의 변수 중요도에서 한국과 미국은 Happy, 일본은 Pleased가 가장 중요한 변수로 나타남을 확인하였다. 단어 간 연관성에서 한국은 수동적 불쾌감, 미국과 일본은 수동적 쾌감이 강하게 나타나는 경향이 있음을 확인하였다. 본 연구를 통해, 한류 콘텐츠에 대한 국가별 감정 반응 차이를 확인할 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.