• Title/Summary/Keyword: construction mechanism

Search Result 960, Processing Time 0.035 seconds

Force transfer mechanism in positive moment continuity details for prestressed concrete girder bridges

  • Hossain, Tanvir;Okeil, Ayman M.
    • Computers and Concrete
    • /
    • v.14 no.2
    • /
    • pp.109-125
    • /
    • 2014
  • The force transfer mechanism in positive moment continuity details for prestressed concrete girder bridges is investigated in this paper using a three-dimensional detailed finite element model. Positive moment reinforcement in the form of hairpin bars as recommended by the National Cooperative Highway Research Program Report No 519 is incorporated in the model. The cold construction joint that develops at the interface between girder ends and continuity diaphragms is also simulated via contact elements. The model is then subjected to the positive moment and corresponding shear forces that would develop over the service life of the bridge. The stress distribution in the continuity diaphragm and the axial force distribution in the hairpin bars are presented. It was found that due to the asymmetric configuration of the hairpin bars, asymmetric stress distribution develops at the continuity diaphragm, which can be exacerbated by other asymmetric factors such as skewed bridge configurations. It was also observed that when the joint is subjected to a positive moment, the tensile force is transferred from the girder end to the continuity diaphragm only through the hairpin bars due to the lack of contact between the both members at the construction joint. As a result, the stress distribution at girder ends was found to be concentrated around the hairpin bars influence area, rather than be resisted by the entire girder composite section. Finally, the results are used to develop an approach for estimating the cracking moment capacity at girder ends based on a proposed effective moment of inertia.

Influence of load transfer on anchored slope stability (앵커보강사면에서 안정해석시 하중전이의 영향)

  • Kim, Sung-Kyu;Park, Jong-Sik;Kim, Nak-Kyung;Joo, Yong-Sun;Kim, Tae-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1351-1358
    • /
    • 2008
  • This paper presents how the load transfer mechanism of the ground anchor affects on the stability analysis of anchored slope. The finite element analysis and the conventional limit equilibrium analysis on the anchored slope were performed and compared. The limit equilibrium analysis of the anchored slope is quite open used in design practice due to the easiness of the analysis. However, the load transfer mechanism is not considered properly for the analysis. When the failure surface passes through the bonded length of an anchor, the anchor load is disregarded and the factor of safety for the anchored slope is smaller than it should be. In this study, the load transfer distribution was incorporated into the limit equilibrium stability analysis of the anchored slope and the results were compared with the results of finite element analysis.

  • PDF

A Method for the Construction of ISO 15926-based Library for Equipment and Materials for the Exchange of Ship Outfitting Design Data (선박 의장 설계 데이터의 교환을 위한 ISO 15926 국제 표준 기반의 기자재 라이브러리 구축 방법)

  • Mun, Du-Hwan;Jinggao, Li;Han, Soon-Hung;Lee, Won-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.613-627
    • /
    • 2010
  • Ships and off-shore plants have very long lifecycles. Design data of ships and off-shore plants are used as master data in the subsequent phases after the design phase. Therefore, it is an important issue how to convert native design data generated from commercial shipbuilding CAD systems into neutral data with the use of international industrial data standards. International standard-based exchange of ship outfitting and off-shore plant data needs the construction of a library for specifications data of equipment and materials and the provision of external referencing mechanism for retrieving data stored in the library. This paper proposes an approach to construct a specifications data library with the use of ISO 15926 process plants. This library is used for providing specifications data through external referencing when translating ship outfitting data from TRIBON system into ISO 10303 STEP AP 227-formed data.

Nanostructural Deformation Analysis of Tricalcium Silicate Paste by Atomic Pair Distribution Function (원자짝 분포 함수를 이용한 칼슘 실리케이트 경화체의 나노 구조 변형 거동 해석)

  • Bae, Sung-Chul;Chang, Yoo-Hyun;Jee, Hyeon-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.94-95
    • /
    • 2016
  • Calcium Silicate Hydrate (C-S-H), which takes up most of the hydration products of Portland Cement (PC), has the greatest impact on the mechanical behavior and strength development of concrete. The exact mechanism of its deformation, however, has not yet been elucidated. The present study aims to demonstrate the mechanism of nano-deformation behavior of C-S-H in tricalcium silicate paste under compressive loading, unloading and reloading by interpreting atomic pair distribution function (PDF) based on synchrotron X-ray scattering. The strain of the tricalcium silicate paste for a short-range of 0 ~ 20 Å under compressive load exhibited two stages, I) nano-packing of interlayer of C-S-H and II) micro-packing of C-S-H globules, whereas the deformation for a long-range order of 20 ~ 40 Å was similar to that of a calcium hydroxide phase measured by Bragg peak shift. Moreover, the residual strains due to the plastic deformation of C-S-H was clearly observed.

  • PDF

Countermeasure and Spalling Property of High Performance Concrete (고성능 콘크리트의 폭렬특성 및 대책)

  • Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1105-1108
    • /
    • 2008
  • This paper investigated measures of spalling prevention and mechanism to secure stability of subjected to a fire circumstance. The results were summarized as following. 1) There were 4 kinds of methods for spalling prevention, such as declining percentage of water content and cement water ratio, isolating from high temperature with fire proof covering, giving lateral resistance stress, and discharging vapor pressure using fibers. 2) It was confirmed that methods using fibers to a new construction and fire proof covering to a existing construction on the basis of investigation for the spalling mechanism through the existing theory of spalling and a new theory of WPB.

  • PDF

Development of Fuzzy Inference Mechanism for Intelligent Data and Information Processing (지능적 정보처리를 위한 퍼지추론기관의 구축)

  • 송영배
    • Spatial Information Research
    • /
    • v.7 no.2
    • /
    • pp.191-207
    • /
    • 1999
  • Data and information necessary for solving the spatial decision making problems are imperfect or inaccurate and most are described by natural language. In order to process these arts of information by the computer, the obscure linguistic value need to be described quantitatively to let and computer understand natural language used by humans. For this , the fuzzy set theory and the fuzzy logic are used representative methodology. So this paper describes the construction of the language model by the natural language that user easily can understand and the logical concepts and construction process for building the fuzzy inference mechanism. It makes possible to solve the space related decision making problems intellectually through structuring and inference used by the computer, in case of the evaluation concern or decision making problems are described inaccurate, based on the inaccurate or indistinct data and information.

  • PDF

Structural coupling mechanism of high strength steel and mild steel under multiaxial cyclic loading

  • Javidan, Fatemeh;Heidarpour, Amin;Zhao, Xiao-Ling;Al-Mahaidi, Riadh
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.229-242
    • /
    • 2018
  • High strength steel is widely used in industrial applications to improve the load-bearing capacity and reduce the overall weight and cost. To take advantage of the benefits of this type of steel in construction, an innovative hybrid fabricated member consisting of high strength steel tubes welded to mild steel plates has recently been developed. Component-scale uniaxial and multiaxial cyclic experiments have been conducted with simultaneous constant or varying axial compression loads using a multi-axial substructure testing facility. The structural interaction of high strength steel tubes with mild steel plates is investigated in terms of member capacity, strength and stiffness deterioration and the development of plastic hinges. The deterioration parameters of hybrid specimens are calibrated and compared against those of conventional steel specimens. Effect of varying axial force and loading direction on the hysteretic deterioration model, failure modes and axial shortening is also studied. Plate and tube elements in hybrid members interact such that the high strength steel is kept within its ultimate strain range to prevent sudden fracture due to its low ultimate to yield strain ratio while the ductile performance of plate governs the global failure mechanism. High strength material also significantly reduces the axial shortening in columns which prevents undesirable frame deformations.