• Title/Summary/Keyword: construction mechanics

Search Result 941, Processing Time 0.03 seconds

Numerical Evaluation of Forces on TBM during Excavation in Mixed Ground Condition by Coupled DEM-FDM (개별요소법 및 유한차분법 연계 모델을 활용한 복합지반 TBM 굴진 시 TBM에 작용하는 힘의 수치해석적 분석)

  • Choi, Soon-Wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.549-560
    • /
    • 2021
  • Forces exerted on a shield TBM (tunnel boring machine) such as cutter head torque, thrust force, chamber pressure, and upward force are key factors determining TBM performance. However, the forces acting on the TBM when tunnelling the mixed ground have different tendencies compared to that of the uniform ground, which could impair TBM performance. In this study, the effect of mixed ground tunnelling was numerically investigated with torque, thrust force, chamber pressure, and upward force. A coupled discrete element method (DEM) and finite difference method (FDM) model for TBM driving model was used. This numerical study simulates TBM tunnelling in mixed ground composed of upper weathered granite soil and lower weathered rock. The effect on the force acting on the TBM according to the location and slope of the boundary of the mixed ground was numerically examined.

Application of Slip-line Method to the Evaluation of Plastic Zone around a Circular Tunnel (원형터널 주변의 소성영역 평가를 위한 slip-line 해석법 활용)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.32 no.5
    • /
    • pp.312-326
    • /
    • 2022
  • The generalized Hoek-Brown (GHB) criterion, which is recognized as one of the standard failure conditions for rock mass, is specialized for rock engineering applications and covers a wide range of rock mass conditions. Accordingly, many research efforts have been devoted to the incorporation of this criterion into the stability analysis of rock structures. In this study, the slip-line analysis method, which is a kind of elastoplastic analysis method, is combined with the GHB failure criterion to derive analytical equations that can easily calculate the plastic radius and stress distribution in the vicinity of the circular tunnel. In the process of derivation of related formulas, it is assumed that the behavior of rock mass after failure is perfectly plastic and the in-situ stress condition is hydrostatic. In the formulation, it is revealed that the plastic radius can be calculated analytically using the two respective tangential friction angles corresponding to the stress conditions at tunnel wall and elastic-plastic boundary. It is also shown that the plastic radius and stress distribution calculated using the derived analytical equations coincide with the results of Lee & Pietruszczak's numerical method published in 2008. In the latter part of this paper, the influence of the quality of the rock mass on the size of the plastic zone, the stress distribution, and the change of the tangential friction angle was investigated using the derived analytical equations.

Numerical Modeling of Thermoshearing in Critically Stressed Rough Rock Fracture: DECOVALEX-2023 Task G (임계응력 하 거친 암석 균열의 Thermoshearing 수치모델링: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook Park;Chan-Hee Park;Li Zhuang;Jeoung Seok Yoon;Changlun Sun;Changsoo Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.189-207
    • /
    • 2023
  • In the present study, the thermoshearing experiment on a rough rock fracture were modeled using a three-dimensional grain-based distinct element model (GBDEM). The experiment was conducted by the Korea Institute of Construction Technology to investigate the progressive shear failure of fracture under the influence of thermal stress in a critical stress state. The numerical model employs an assembly of multiple polyhedral grains and their interfaces to represent the rock sample, and calculates the coupled thermo-mechanical behavior of the grains (blocks) and the interfaces (contacts) using 3DEC, a DEM code. The primary focus was on simulating the temperature evolution, generation of thermal stress, and shear and normal displacements of the fracture. Two fracture models, namely the mated fracture model and the unmated fracture model, were constructed based on the degree of surface matedness, and their respective behaviors were compared and analyzed. By leveraging the advantage of the DEM, the contact area between the fracture surfaces was continuously monitored during the simulation, enabling an examination of its influence on shear behavior. The numerical results demonstrated distinct differences depending on the degree of the surface matedness at the initial stage. In the mated fracture model, where the surfaces were in almost full contact, the characteristic stages of peak stress and residual stress commonly observed in shear behavior of natural rock joints were reasonably replicated, despite exhibiting discrepancies with the experimental results. The analysis of contact area variation over time confirmed that our numerical model effectively simulated the abrupt normal dilation and shear slip, stress softening phenomenon, and transition to the residual state that occur during the peak stress stage. The unmated fracture model, which closely resembled the experimental specimen, showed qualitative agreement with the experimental observations, including heat transfer characteristics, the progressive shear failure process induced by heating, and the increase in thermal stress. However, there were some mismatches between the numerical and experimental results regarding the onset of fracture slip and the magnitudes of fracture stress and displacement. This research was conducted as part of DECOVALEX-2023 Task G, and we expect the numerical model to be enhanced through continued collaboration with other research teams and validated in further studies.

Analysis on Design Change for Backfilling Solution of the Disposal Tunnel in the Deep Geological Repository for High-Level Radioactive Waste in Finland (핀란드 고준위방사성폐기물 심층처분시설 처분터널 뒤채움 설계 변경을 위한 연구사례 분석)

  • Heekwon Ku;Sukhoon Kim;Jeong-Hwan Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.435-444
    • /
    • 2023
  • In the licensing application for the deep geological disposal system of high-level radioactive waste in Finland, the disposal tunnel backfilling has been changed from the block/pellet (for the construction) to the granular type (for the operation). Accordingly, for establishing the design concept for backfilling, it is necessary to examine applicability to the domestic facility through analyzing problems of the existing method and improvements in the alternative design. In this paper, we first reviewed the principal studies conducted for changing the backfill method in the licensing process of the Finnish facility, and identified the expected problems in applying the block/pellet backfill method. In addition, we derived the evaluation factors to be considered in terms of technical and operational aspects for the backfilling solution, and then conducted a comparative analysis for two types of backfill methods. This analysis confirmed the overall superiority of the design change. It is expected that these results could be utilized as the technical basis for deriving the optimum design plan in development process of the Korean-specific deep disposal facility. However, applicability should be reviewed in advance based on the latest technical data for the detailed evaluation factors that must be considered for selecting the backfilling method.

Evaluation of Hydrogeological Characteristics of Deep-Depth Rock Aquifer in Volcanic Rock Area (화산암 지역 고심도 암반대수층 수리지질특성 평가)

  • Hangbok Lee;Chan Park;Junhyung Choi;Dae-Sung Cheon;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.3
    • /
    • pp.231-247
    • /
    • 2024
  • In the field of high-level radioactive waste disposal targeting deep rock environments, hydraulic characteristic information serves as the most important key factor in selecting relevant disposal sites, detailed design of disposal facilities, derivation of optimal construction plans, and safety evaluation during operation. Since various rock types are mixed and distributed in a small area in Korea, it is important to conduct preliminary work to analyze the hydrogeological characteristics of rock aquifers for various rock types and compile the resulting data into a database. In this paper, we obtained hydraulic conductivity data, which is the most representative field hydraulic characteristic of a high-depth volcanic bedrock aquifer, and also analyzed and evaluated the field data. To acquire field data, we used a high-performance hydraulic testing system developed in-house and applied standardized test methods and investigation procedures. In the process of hydraulic characteristic data analysis, hydraulic conductivity values were obtained for each depth, and the pattern of groundwater flow through permeable rock joints located in the test section was also evaluated. It is expected that the series of data acquisition methods, procedures, and analysis results proposed in this report can be used to build a database of hydraulic characteristics data for high-depth rock aquifers in Korea. In addition, it is expected that it will play a role in improving technical know-how to be applied to research on hydraulic characteristic according to various bedrock types in the future.

Review of In-situ Installation of Buffer and Backfill and Their Water Saturation Management for a Deep Geological Disposal System of Spent Nuclear Fuel (국외 사례를 통한 사용후핵연료 심층처분시스템 완충재 및 뒤채움재의 현장시공 및 포화도 관리 기술 분석)

  • Ju-Won Yun;Won-Jin Cho;Hyung-Mok Kim
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.104-126
    • /
    • 2024
  • Buffer and backfill play an essential role in isolating high-level radioactive waste and retard the migration of leaked radionuclides in deep geological disposal system. A bentonite mixture, which exhibits a swelling property, is considered for buffer and backfill materials, and excessive groundwater inflow from surrounding rock mass may affect stability and efficiency of their role as an engineered barrier. Therefore, stringent quality control as well as in-situ installation management and inflow water constrol for buffer and backfill are required to ensure the safety of deep disposal facilities. In this study, we analyzed the design requirements of buffer and backfill by examining various laboratory tests and a field study of the Steel Tunnel Test at the Äspö Hard Rock Laboratory in Sweden. We introduced how to control the quality of buffer and backfill construction in-field, and also presented how to handle excessive groundwater inflow into disposal caverns, validating the groundwater retention capacity of bentonite pellets and the effectiveness of geotexile use.

A Study on Hydraulic Characteristics of Permeable Rock Fractures in Deep Rock Aquifer Using Geothermal Gradient and Pumping Test Data (지온경사와 양수시험 자료를 활용한 심부 암반대수층 투수성 암반균열의 수리특성 연구)

  • Hangbok Lee;Cholwoo Lee;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.312-329
    • /
    • 2024
  • In various underground research projects such as energy storage and development and radioactive waste disposal targeting deep underground, the characteristics of permeable rock fractures that serve as major pathway of groundwater flow in deep rock aquifer are considered as an important evaluation factor in the design, construction, and operation of research facilities. In Korea, there is little research and database on the location and hydraulic characteristics of permeable rock fractures and the pattern of groundwater flow patterns that may occur between fractures in deep rock boreholes. In this paper, the hydraulic characteristics of permeable rock fractures in deep rock aquifer were evaluated through the analysis of geothermal gradient and pumping test data. First, the deep geothermal distribution was identified through temperature logging, and the geothermal gradient was obtained through linear regression analysis using temperature data by depth. In addition, the hydraulic characteristics of the fractured rock were analyzed using outflow temperature obtained from pumping tests. Ultimately, the potential location and hydraulic characteristics of permeable rock fractures, as well as groundwater flow within the boreholes, were evaluated by integrating and analyzing the geophysical logging and hydraulic testing data. The process and results of the evaluation of deep permeable rock fractures proposed in this study are expected to serve as foundational data for the successful implementation of underground research projects targeting deep rock aquifers.

Improving the Accuracy of the Mohr Failure Envelope Approximating the Generalized Hoek-Brown Failure Criterion (일반화된 Hoek-Brown 파괴기준식의 근사 Mohr 파괴포락선 정확도 개선)

  • Youn-Kyou Lee
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.355-373
    • /
    • 2024
  • The Generalized Hoek-Brown (GHB) criterion is a nonlinear failure criterion specialized for rock engineering applications and has recently seen increased usage. However, the GHB criterion expresses the relationship between minimum and maximum principal stresses at failure, and when GSI≠100, it has disadvantage of being difficult to express as an explicit relationship between the normal and shear stresses acting on the failure plane, i.e., as a Mohr failure envelope. This disadvantage makes it challenging to apply the GHB criterion in numerical analysis techniques such as limit equilibrium analysis, upper-bound limit analysis, and the critical plane approach. Consequently, recent studies have attempted to express the GHB Mohr failure envelope as an approximate analytical formula, and there is still a need for continued interest in related research. This study presents improved formulations for the approximate GHB Mohr failure envelope, offering higher accuracy in predicting shear strength compared to existing formulas. The improved formulation process employs a method to enhance the approximation accuracy of the tangential friction angle and utilizes the tangent line equation of the nonlinear GHB failure envelope to improve the accuracy of shear strength approximation. In the latter part of this paper, the advantages and limitations of the proposed approximate GHB failure envelopes in terms of shear strength prediction accuracy and calculation time are discussed.

Evaluation of the Minimum Shear Reinforcement Ratio of Reinforced Concrete Members (철근콘크리트 부재의 최소전단보강근비의 평가)

  • Lee Jung-Yoon;Yoon Sung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.43-53
    • /
    • 2004
  • The current Korean Concrete Design Code(KCI Code) requires the minimum and maximum content of shear s in order to prevent brittle and noneconomic design. However, the required content of the steel reinforcement In KCI Code is quite different to those of the other design codes such as fib-code, Canadian Code, and Japanese Code. Furthermore, since the evaluation equations of the minimum and maximum shear reinforcement for the current KCI Code were based on the experimental results, the equations can not be used for the RC members beyond the experimental application limits. The concrete tensile strength, shear stress, crack inclination, strain perpendicular to the crack, and shear span ratio are strongly related to the lower and upper limits of shear reinforcement. In this research, an evaluation equation for the minimum content of shear reinforcement is theoretical proposed from the Wavier's three principals of the mechanics of materials.

Weathering Sensitivity Characterization for Rock Slope, Considering Time Dependent Strength Changes (시간에 따른 강도변화를 고려한 암반사면의 풍화민감특성 분석)

  • Lee Jeong-Sang;Bae Seong-Ho;Yu Yeong-Il;Oh Joung-Bae;Lee Du-Hwa;Park Joon-Young
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.109-134
    • /
    • 2006
  • Rocks undergo weathering processes influenced by changing in pressure-temperature condition, atmosphere, underground water, and rainfall. The weathering processes change physical and chemical characteristics of the rocks. Once the rocks are weathered, the characteristics of them are changed and, because of the changing, several disadvantages such as rock slope failures and underground water spouts are can occur. Before we cut a large rock slope, therefore, we must analyze current weathering conditions of rocks and predict weathering processes in the future. Through the results of such analyses, we can judge reinforcement works. In order to comply with such requests, chemical weathering sensitivity analysis which was analyzed from chemical weathering velocities and other characteristics of rocks has been applied in several prior construction works in Korea. But, It is defective to use directly in engineering fields because it was developed for soils(not rocks), it has too mny factors must be considered and the relationships between the factors are not clear, and it is hard to explain the weathering processes in engineering time range. Besides above, because it has been used for isotropic rocks, this method is hard to apply to anisotropic rocks such as sedimentary rocks. Acceding to studies from morphologists (e.g. Oguchi et al., 1994; Sunamura, 1996; Norwick and Dexter, 2002), time dependent strength reduction influenced by weathering shows a negative exponential function form. Appling this relation, one can synthesize the factors which influence the weathering processes to the strength reduction, and get meaningful estimates in engineering viewpoint. We suggest this weathering sensitivity characterization method as a technique that can explain time dependent weathering sensitivity characteristics through strength changes and can directly applied the rock slope design.