• Title/Summary/Keyword: construction costs

Search Result 1,556, Processing Time 0.025 seconds

An Experimental Study on the Structural Performance of Lateral Resistance in Steel Elevator Pit (강재엘리베이터 피트 측압저항 구조성능에 관한 실험적 연구)

  • Hong, Seong-Uk;Kim, Tae-Soo;Baek, Ki-Youl
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 2019
  • Steel elevator pit was developed for the purpose of minimizing the excavation, simplifying the construction of the frame and economical efficiency by improving the problems that occurred in the existing reinforced concrete. It is common to apply conventional RC method through excavation to underground structures such as underground floor collector well and elevator pit. In recent years, the use of steel collector well and steel elevator pits to reduce construction costs by minimizing the materials of steel and concrete has been continuously increasing. The steel elevator pit is an underground structure and then the performance of the welding part and the structure system is important. Specimen with only steel plate and concrete without studs could support the load more than 3 times than the specimen with deck only. Therefore, even if there is no stud, the deck (steel plate) rib is formed and the effect of restraining the steel plate and the concrete during the bending action can be expected. However, since sudden fracture in the elevator pit may occur, stud bolt arrangement is necessary for the composite effect of steel plate and concrete. It is expected that the bending strength can be expected to increase by about 15% or more depending with and without stud bolts.

Development of Risk Evaluation Checklist for In-Situ Production of Precast Concrete Members (기성콘크리트 부재의 현장생산 리스크 평가를 위한 체크리스트 개발)

  • Lim, Jeeyoung;Jeong, Hee Woong;Kim, Dae Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.445-457
    • /
    • 2021
  • In previous studies, it was confirmed that through the in-situ production of precast concrete members, costs could be reduced by 14.5-39.4% compared to in-plant production. In particular, it was confirmed that the factory owner did not make a contract if it did not earn more than 20% of the production cost. If precast concrete members are produced in-situ under the same conditions, the quality equivalent to that of factory production can be secured. As it is advantageous in terms of cost and quality, precast concrete members must be produced in-situ. However, it is difficult to produce all quantities in-situ due to time and various other constraints. This is because in-situ production is avoided due to anticipated risks during the project management process. However, if the risk factors are analyzed before performing in-situ production of precast concrete members, it will increase the opportunity for in-situ production. Therefore, this study develops a checklist for evaluating the risk of in-situ production of precast concrete members. By applying the checklist to one case site, it was verified that risk factors can be evaluated easily and quickly. As a result, it was analyzed that sites with a high building coverage ratio are classified as high-risk sites because it is difficult to secure usable area for production and storage. The developed checklist efficiently evaluates the risk factors of in-site production, and makes it possible for the operator to determine the risk factors, which can change frequently during project execution, and respond according to the situation.

The Attitude Change of the Downstream Cambodian Government on the Development of Hydropower Dams in the Mekong River: The Background and Influential Factors (메콩강 수력발전댐 개발에 대한 하류국가캄보디아 정부의 태도 변화: 그 배경과 영향 요인)

  • JEON, Eun Jung;YUN, Sun-Jin
    • The Southeast Asian review
    • /
    • v.28 no.1
    • /
    • pp.219-261
    • /
    • 2018
  • The conflicts among nations surrounding international rivers are intensifying as worldwide water shortage is getting worse. The Mekong River is a representative trans-boundary river in Southeast Asia shared by six countries, China, Myanmar, Thailand, Laos, Cambodia, and Vietnam. As the economy grows, hydroelectric power has become a major power supply source to meet the increasing power demand of the these countries. However, the construction of dams on the Mekong River is controversial because hydroelectric power in the river upstream has a negative impact not only on the whole river ecosystem but also on residents' life around downstream, in particular. In order to understand the controversy arising from international rivers, it is necessary to take into account different positions of countries sharing it. However, studies on the position of a specific country to Mekong hydropower have been conducted mainly focusing on China and Laos. Therefore, this study tried to study the position of Cambodian government which is located downstream of the Mekong River and is likely to bear costs rather than to gain benefits from hydroelectric power generation. What is the attitude of the Cambodian government to the hydroelectric development of the upper Mekong and what is the reason for that? The study confirmed the Cambodian government's support for dam construction on the Mekong River. It also figured out influential factors on the formation of such a position as follows: 1) economic asymmetry with China, 2) power dependency and geographical asymmetry in Laos, and 3) importance of hydroelectric power in Cambodia.

Economic Analysis on the Automation System of the Cultivation Process in the Plant Factory (식물공장 재배 공정 자동화 시스템의 경제성 분석)

  • Jung, Mincheol;Kim, Handon;Kim, Jimin;Choi, Jeongmin;Jang, Hyounseung;Jo, Soun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.4
    • /
    • pp.57-64
    • /
    • 2022
  • A plant factory is a facility that creates an artificial environment in a controlled space and produces plants systematically through automated facilities. However, automation in the cultivation process is insufficient compared to the internal environment control technology in plant factories. This causes the problem of an increase in operating costs due to the input of a large number of workers. Therefore, this study aims to evaluate economic feasibility by comparing before and after introducing automation in the cultivation process of plant factories. The target plant factory to be analyzed was selected, and the break-even point analysis method was used by comparing the cost required compared to the operating period. As a result, the break-even point was analyzed to be 3.4 years when automation was introduced into six processes for plant cultivation. Therefore, it can be judged that the introduction of automation is excellent in terms of economic feasibility when the target plant factory has been operated for more than 3.4 years. This study is expected to be used as basic data to analyze the economic feasibility of introducing automation in domestic and foreign plant factories.

Operating Budget Management Plan on Electric Energy Consumption of Educational Facilities (교육시설물의 전기에너지 사용량에 따른 운영예산 관리방안)

  • Wang, Ji-Hwan;Jin, Chengquan;Lee, Sanghoon;Hyun, Chang-Taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.4
    • /
    • pp.26-35
    • /
    • 2022
  • The 7th education reform in 1997 has led changes in the way buildings were constructed and such changes drove educational facilities to steadily consume more energy every year. Also, these facilities take several years' estimated expenditure as well as the increased unit price of electricity into account when planning their annual operating budget. Such circumstances may adversely affect the establishment of their budget plan since improper allocation of operating costs could take place. To propose educational facilities' operating budget management plan on electrical energy consumption, this study developed a model that help oversee the facilities' consumption of electrical energy. For the model development, the primary core variables related to electrical energy factors from the aspects of surroundings, physics, policy, etc. were derived from taking both literature research and the characteristics of these facilities into account. The secondary core variables were then derived using the correlation analysis. Lastly, the electric energy use prediction model was developed by performing regression analysis based on the derived secondary core variables.

A Evaluation of Fire Behavior According to Member Thickness of Precast Prestressed Hollow Core Slab of Fire Resistance Section (프리캐스트 프리스트레스트 내화단면 중공슬래브의 부재두께에 따른 화재거동평가 )

  • Yoon-Seob Boo;Kyu-Woong Bae;Sang-Min Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • At construction sites, interest in the production of precast materials is increasing due to off-site conditions due to changes in construction site conditions due to increased labor costs and the Act on the Punishment of Serious Accidents. In particular, the precast prestressed hollow slab has a hollow shape in the cross section, so structural performance is secured by reducing weight and controlling deflection through stranded wires. With the application of structural standards, the urgency of securing fire resistance performance is emerging. In this study, a fire-resistance cross section was developed by reducing the concrete filling rate in the cross section and improving the upper and lower flange shapes by optimizing the hollow shape in the cross section of the slab to have the same or better structural performance and economic efficiency compared to the existing hollow slab. The PC hollow slab to which this was applied was subjected to a two-hour fire resistance test using the cross-sectional thickness as a variable, and as a result of the test, fire resistance performance (load bearing capacity, heat shielding property, flame retardance property) was secured. Based on the experimental results, it is determined that fire resistance modeling can be established through numerical analysis simulation, and prediction of fire resistance analysis is possible according to the change of the cross-sectional shape in the future.

Durability Evaluation of Cement Concrete Using Ferrosilicon Industrial Byproduct (페로실리콘 산업부산물 활용 시멘트 콘크리트의 내구성능 평가)

  • Chang-Young Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 2023
  • In this paper, a ferrosilicon by-product was evaluated to confirm the feasibility of recycling it as supplementary cementitious material of ordinary Portland cement in concrete. Three different levels of replacement ratio (10 %, 20 % and 30 % of total binder) were applied to find which is the most beneficial to be used as a binder. Ferrosilicon concrete was initially assessed at setting time and compressive strength. Durability was evaluated by the resistance to chloride penetration test(RCPT) and alkali-silica reaction(ASR) with a comparison to silica fume concrete due to their similarity in chemical composition. The porosimetry and X-ray diffraction analysis along with energy dispersive X-ray spectroscopy give information on the microstructural characteristics of the ferrosilicon concrete. It was found that 10 % ferrosilicon concrete has higher strength while 20 %, 30 % have lower strength than OPC concrete. However, chemical resistance to chloride attack is higher when replacement is increased. Compared to silica fume, the durability of ferrosilicon might be less efficient however, it is obviously beneficial than OPC. High SiO2 content in ferrosilicon results in producing more C-S-H gel which could make denser pore structure. Most of the risk of alkali silica reaction to silicate binders through length change tests was less than 0.2 %, and both mortar using ferrosilicon and silica fume showed better resistance to alkali silica reaction as the substitution rate increased.Reuse of industrial waste rather than producing highly refined additives might reduce environmental load during manufacture and save costs.

Influence of Pile Driving-Induced Vibration on the Adjacent Slope (파일 항타진동이 인접 비탈면에 미치는 영향)

  • Kwak, Chang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.27-40
    • /
    • 2023
  • A pile is a structural element that is used to transfer external loads from superstructures and has been widely utilized in construction fields all over the world. The method of installing a pile into the ground should be selected based on geotechnical conditions, location, site status, environmental factors, and construction costs, among others. It can be divided into two types: direct hammering and preboring. The direct hammering method installs a pile into the bearing layer, such as rock, using a few types of hammer, generating a considerable amount of pile driving-induced vibration. The vibration from pile driving influences adjacent structures and the ground; therefore, quantitatively investigating the effects of vibration is inevitably required. In this study, two-dimensional dynamic numerical modeling and analysis are performed using the finite difference method to investigate the influence on the adjacent slope, including temporary supporting system. Time-dependent loading induced by pile driving is estimated and used in the numerical analysis. Consequently, large surface displacement is estimated due to surface waves and less wave deflection, and refraction at the surface. The total displacement decreases with the increase of the distance from the source. However, lateral displacement at the top of the slope shows a larger value than vertical displacement, and the overall displacement tends to be concentrated near the face of the slope.

Condition Estimation of Facility Elements Using XGBoost (XGBoost를 활용한 시설물의 부재 상태 예측)

  • Chang, Taeyeon;Yoon, Sihoo;Chi, Seokho;Im, Seokbeen
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.1
    • /
    • pp.31-39
    • /
    • 2023
  • To reduce facility management costs and safety concerns due to aging of facilities, it is important to estimate the future facilities' condition based on facility management data and utilize predictive information for management decision making. To this end, this study proposed a methodology to estimate facility elements' condition using XGBoost. To validate the proposed methodology, this study constructed sample data for road bridges and developed a model to estimate condition grades of major elements expected in the next inspection. As a result, the developed model showed satisfactory performance in estimating the condition grades of deck, girder, and abutment/pier (average F1 score 0.869). In addition, a testbed was established that provides data management function and element condition estimation function to demonstrate the practical applicability of the proposed methodology. It was confirmed that the facility management data and predictive information in this study could help managers in making facility management decisions.

A Study on the Field Application of the Measurement Technique for Static Displacement of Bridge Using Ambient Vibration (상시 진동을 이용한 교량 정적 처짐 산정 기술의 현장 적용성 연구)

  • Sang-Hyuk Oh;Dae-Joong Moon;Kwang-Myong Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • In safety assessment of a aged bridge, dynamic characteristics and displacement are directly related to the rigidity of the structural system, especially displacement is the most important factor as the physical quantity that the bridge user can directly detect. However, in order to measure the displacement of the bridge, it is difficult to install displacement sensors at the bottom of the bridge and conduct traffic blocking and loading tests, resulting in increased costs or impossible measurements depending on the bridge's environment. In this study, a method of measuring the displacement of a bridge using only accelerometers without installing displacement sensors and ambient vibration without a loading test was proposed. For the analysis of bridge dynamic characteristics and displacement using ambient vibration, the mode shape and natural frequency of the bridge were extracted using a TDD technique known to enable quick analysis with simple calculations, and the unit load displacement of the bridge was analyzed through flexibility analysis to calculate static displacement. To verify this proposed technology, an on-site test was conducted on C Bridge, and the results were compared with the measured values of the loading test and the structural analysis data. As a result, it was confirmed that the mode shape and natural frequency were 0.42 to 1.13 % error ratio, and the maximum displacement at the main span was 3.58 % error ratio. Therefore, the proposed technology can be used as a basis data for indirectly determine the safety of the bridge by comparing the amount of displacement compared to the design and analysis values by estimating the displacement of the bridge that could not be measured due to the difficulty of installing displacement sensors.