• Title/Summary/Keyword: constrained multi-objective optimization

Search Result 34, Processing Time 0.028 seconds

Multi-Objective Controller Design using a Rank-Constrained Linear Matrix Inequality Method (계수조건부 LMI를 이용한 다목적 제어기 설계)

  • Kim, Seog-Joo;Kim, Jong-Moon;Cheon, Jong-Min;Kwon, Soon-Mam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.67-71
    • /
    • 2009
  • This paper presents a rank-constrained linear matrix inequality (LMI) approach to the design of a multi-objective controller such as $H_2/H_{\infty}$ control. Multi-objective control is formulated as an LMI optimization problem with a nonconvex rank condition, which is imposed on the controller gain matirx not Lyapunov matrices. With this rank-constrained formulation, we can expect to reduce conservatism because we can use separate Lyapunov matrices for different control objectives. An iterative penalty method is applied to solve this rank-constrained LMI optimization problem. Numerical experiments are performed to illustrate the proposed method.

Adaptive Truncation technique for Constrained Multi-Objective Optimization

  • Zhang, Lei;Bi, Xiaojun;Wang, Yanjiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5489-5511
    • /
    • 2019
  • The performance of evolutionary algorithms can be seriously weakened when constraints limit the feasible region of the search space. In this paper we present a constrained multi-objective optimization algorithm based on adaptive ε-truncation (ε-T-CMOA) to further improve distribution and convergence of the obtained solutions. First of all, as a novel constraint handling technique, ε-truncation technique keeps an effective balance between feasible solutions and infeasible solutions by permitting some excellent infeasible solutions with good objective value and low constraint violation to take part in the evolution, so diversity is improved, and convergence is also coordinated. Next, an exponential variation is introduced after differential mutation and crossover to boost the local exploitation ability. At last, the improved crowding density method only selects some Pareto solutions and near solutions to join in calculation, thus it can evaluate the distribution more accurately. The comparative results with other state-of-the-art algorithms show that ε-T-CMOA is more diverse than the other algorithms and it gains better in terms of convergence in some extent.

Internet Shopping Optimization Problem With Delivery Constraints

  • Chung, Ji-Bok
    • Journal of Distribution Science
    • /
    • v.15 no.2
    • /
    • pp.15-20
    • /
    • 2017
  • Purpose - This paper aims to suggest a delivery constrained internet shopping optimization problem (DISOP) which must be solved for online recommendation system to provide a customized service considering cost and delivery conditions at the same time. Research design, data, and methodology - To solve a (DISOP), we propose a multi-objective formulation and a solution approach. By using a commercial optimization software (LINDO), a (DISOP) can be solved iteratively and a pareto optimal set can be calculated for real-sized problem. Results - We propose a new research problem which is different with internet shopping optimization problem since our problem considers not only the purchasing cost but also delivery conditions at the same time. Furthermore, we suggest a multi-objective mathematical formulation for our research problem and provide a solution approach to get a pareto optimal set by using numerical example. Conclusions - This paper proposes a multi-objective optimization problem to solve internet shopping optimization problem with delivery constraint and a solution approach to get a pareto optimal set. The results of research will contribute to develop a customized comparison and recommendation system to help more easy and smart online shopping service.

Many-objective joint optimization for dependency-aware task offloading and service caching in mobile edge computing

  • Xiangyu Shi;Zhixia Zhang;Zhihua Cui;Xingjuan Cai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1238-1259
    • /
    • 2024
  • Previous studies on joint optimization of computation offloading and service caching policies in Mobile Edge Computing (MEC) have often neglected the impact of dependency-aware subtasks, edge server resource constraints, and multiple users on policy formulation. To remedy this deficiency, this paper proposes a many-objective joint optimization dependency-aware task offloading and service caching model (MaJDTOSC). MaJDTOSC considers the impact of dependencies between subtasks on the joint optimization problem of task offloading and service caching in multi-user, resource-constrained MEC scenarios, and takes the task completion time, energy consumption, subtask hit rate, load variability, and storage resource utilization as optimization objectives. Meanwhile, in order to better solve MaJDTOSC, a many-objective evolutionary algorithm TSMSNSGAIII based on a three-stage mating selection strategy is proposed. Simulation results show that TSMSNSGAIII exhibits an excellent and stable performance in solving MaJDTOSC with different number of users setting and can converge faster. Therefore, it is believed that TSMSNSGAIII can provide appropriate sub-task offloading and service caching strategies in multi-user and resource-constrained MEC scenarios, which can greatly improve the system offloading efficiency and enhance the user experience.

Trade-off Analysis in Multi-objective Optimization Using Chebyshev Orthogonal Polynomials

  • Baek Seok-Heum;Cho Seok-Swoo;Kim Hyun-Su;Joo Won-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.366-375
    • /
    • 2006
  • In this paper, it is intended to introduce a method to solve multi-objective optimization problems and to evaluate its performance. In order to verify the performance of this method it is applied for a vertical roller mill for Portland cement. A design process is defined with the compromise decision support problem concept and a design process consists of two steps: the design of experiments and mathematical programming. In this process, a designer decides an object that the objective function is going to pursuit and a non-linear optimization is performed composing objective constraints with practical constraints. In this method, response surfaces are used to model objectives (stress, deflection and weight) and the optimization is performed for each of the objectives while handling the remaining ones as constraints. The response surfaces are constructed using orthogonal polynomials, and orthogonal array as design of experiment, with analysis of variance for variable selection. In addition, it establishes the relative influence of the design variables in the objectives variability. The constrained optimization problems are solved using sequential quadratic programming. From the results, it is found that the method in this paper is a very effective and powerful for the multi-objective optimization of various practical design problems. It provides, moreover, a reference of design to judge the amount of excess or shortage from the final object.

A Constrained Multi-objective Computation Offloading Algorithm in the Mobile Cloud Computing Environment

  • Liu, Li;Du, Yuanyuan;Fan, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4329-4348
    • /
    • 2019
  • Mobile cloud computing (MCC) can offload heavy computation from mobile devices onto nearby cloudlets or remote cloud to improve the performance as well as to save energy for these devices. Therefore, it is essential to consider how to achieve efficient computation offloading with constraints for multiple users. However, there are few works that aim at multi-objective problem for multiple users. Most existing works concentrate on only single objective optimization or aim to obtain a tradeoff solution for multiple objectives by simply setting weight values. In this paper, a multi-objective optimization model is built to minimize the average energy consumption, time and cost while satisfying the constraint of bandwidth. Furthermore, an improved multi-objective optimization algorithm called D-NSGA-II-ELS is presented to get Pareto solutions with better convergence and diversity. Compared to other existing works, the simulation results show that the proposed algorithm can achieve better performance in terms of energy consumption, time and cost while satisfying the constraint of the bandwidth.

Constrained Relay Node Deployment using an improved multi-objective Artificial Bee Colony in Wireless Sensor Networks

  • Yu, Wenjie;Li, Xunbo;Li, Xiang;Zeng, Zhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2889-2909
    • /
    • 2017
  • Wireless sensor networks (WSNs) have attracted lots of attention in recent years due to their potential for various applications. In this paper, we seek how to efficiently deploy relay nodes into traditional static WSNs with constrained locations, aiming to satisfy specific requirements of the industry, such as average energy consumption and average network reliability. This constrained relay node deployment problem (CRNDP) is known as NP-hard optimization problem in the literature. We consider addressing this multi-objective (MO) optimization problem with an improved Artificial Bee Colony (ABC) algorithm with a linear local search (MOABCLLS), which is an extension of an improved ABC and applies two strategies of MO optimization. In order to verify the effectiveness of the MOABCLLS, two versions of MO ABC, two additional standard genetic algorithms, NSGA-II and SPEA2, and two different MO trajectory algorithms are included for comparison. We employ these metaheuristics on a test data set obtained from the literature. For an in-depth analysis of the behavior of the MOABCLLS compared to traditional methodologies, a statistical procedure is utilized to analyze the results. After studying the results, it is concluded that constrained relay node deployment using the MOABCLLS outperforms the performance of the other algorithms, based on two MO quality metrics: hypervolume and coverage of two sets.

Symbiotic organisms search algorithm based solution to optimize both real power loss and voltage stability limit of an electrical energy system

  • Pagidi, Balachennaiah;Munagala, Suryakalavathi;Palukuru, Nagendra
    • Advances in Energy Research
    • /
    • v.4 no.4
    • /
    • pp.255-274
    • /
    • 2016
  • This paper presents a novel symbiotic organisms search (SOS) algorithm to optimize both real power loss (RPL) and voltage stability limit (VSL) of a transmission network by controlling the variables such as unified power flow controller (UPFC) location, UPFC series injected voltage magnitude and phase angle and transformer taps simultaneously. Mathematically, this issue can be formulated as nonlinear equality and inequality constrained multi objective, multi variable optimization problem with a fitness function integrating both RPL and VSL. The symbiotic organisms search (SOS) algorithm is a nature inspired optimization method based on the biological interactions between the organisms in ecosystem. The advantage of SOS algorithm is that it requires a few control parameters compared to other meta-heuristic algorithms. The proposed SOS algorithm is applied for solving optimum control variables for both single objective and multi-objective optimization problems and tested on New England 39 bus test system. In the single objective optimization problem only RPL minimization is considered. The simulation results of the proposed algorithm have been compared with the results of the algorithms like interior point successive linear programming (IPSLP) and bacteria foraging algorithm (BFA) reported in the literature. The comparison results confirm the efficacy and superiority of the proposed method in optimizing both single and multi objective problems.

Minimization of Die Wear Rate by Using Multi-Objective Optimization in Three-Dimensional Extrusion Processes (3차원 압출 공정에서 다목적 최적화 기법을 이용한 금형 마모율의 최소화)

  • Lee S. R.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.262-265
    • /
    • 2005
  • A shape optimization of flow guide is accomplished to minimize the wear rate of die in three-dimensional flat-die extrusion processes. In order to achieve the balanced flow and the uniformed distribution of the effective strain during the extrusion, a multi-objective optimization is implemented. During the process of optimization formulation, the flow balance and the deviation of strain is considered as constrained conditions. The proposed approach is applied to an extrusion of H section. Through the optimization, it has been confirmed that the wear rate of die can be minimized satisfying the constraint.

  • PDF

A novel PSO-based algorithm for structural damage detection using Bayesian multi-sample objective function

  • Chen, Ze-peng;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.825-835
    • /
    • 2017
  • Significant improvements to methodologies on structural damage detection (SDD) have emerged in recent years. However, many methods are related to inversion computation which is prone to be ill-posed or ill-conditioning, leading to low-computing efficiency or inaccurate results. To explore a more accurate solution with satisfactory efficiency, a PSO-INM algorithm, combining particle swarm optimization (PSO) algorithm and an improved Nelder-Mead method (INM), is proposed to solve multi-sample objective function defined based on Bayesian inference in this study. The PSO-based algorithm, as a heuristic algorithm, is reliable to explore solution to SDD problem converted into a constrained optimization problem in mathematics. And the multi-sample objective function provides a stable pattern under different level of noise. Advantages of multi-sample objective function and its superior over traditional objective function are studied. Numerical simulation results of a two-storey frame structure show that the proposed method is sensitive to multi-damage cases. For further confirming accuracy of the proposed method, the ASCE 4-storey benchmark frame structure subjected to single and multiple damage cases is employed. Different kinds of modal identification methods are utilized to extract structural modal data from noise-contaminating acceleration responses. The illustrated results show that the proposed method is efficient to exact locations and extents of induced damages in structures.