
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 5, May. 2024 1238
Copyright ⓒ 2024 KSII

http://doi.org/10.3837/tiis.2024.05.006 ISSN : 1976-7277

Many-objective joint optimization for
dependency-aware task offloading and

service caching in mobile edge computing

Xiangyu Shi1, Zhixia Zhang1, Zhihua Cui1 and Xingjuan Cai1*
1 Shanxi Key Laboratory of Big Data Analysis and Parallel Computing, Taiyuan University of Science and

Technology, Taiyuan, 030024, Shanxi, China
[e-mail: xingjuancai@163.com]

*Corresponding author: Xingjuan Cai

Received December 26, 2023; revised April 13, 2024; accepted April 23, 2024;
published May 31, 2024

Abstract

Previous studies on joint optimization of computation offloading and service caching policies
in Mobile Edge Computing (MEC) have often neglected the impact of dependency-aware
subtasks, edge server resource constraints, and multiple users on policy formulation. To
remedy this deficiency, this paper proposes a many-objective joint optimization dependency-
aware task offloading and service caching model (MaJDTOSC). MaJDTOSC considers the
impact of dependencies between subtasks on the joint optimization problem of task offloading
and service caching in multi-user, resource-constrained MEC scenarios, and takes the task
completion time, energy consumption, subtask hit rate, load variability, and storage resource
utilization as optimization objectives. Meanwhile, in order to better solve MaJDTOSC, a
many-objective evolutionary algorithm TSMSNSGAIII based on a three-stage mating
selection strategy is proposed. Simulation results show that TSMSNSGAIII exhibits an
excellent and stable performance in solving MaJDTOSC with different number of users setting
and can converge faster. Therefore, it is believed that TSMSNSGAIII can provide appropriate
sub-task offloading and service caching strategies in multi-user and resource-constrained MEC
scenarios, which can greatly improve the system offloading efficiency and enhance the user
experience.

Keywords: Mobile Edge Computing (MEC), Dependency Aware Task Offloading Service
Caching, Multi-user, Resource Constraint, Many-objective Evolutionary Algorithm.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 5, May 2024 1239

1. Introduction

Applications that are more sensitive to latency and resource needs are currently proliferating
in fields including data stream processing, face recognition, and virtual/augmented reality,
because mobile devices and the Internet of Things are so widely used [1]. But as of right now,
cloud computing platforms or mobile devices are mostly used to process and execute these
apps. It cannot be ignored that, on the one hand, many applications require computing
resources that are not met on mobile devices. On the other hand, deploying resource-intensive
applications on cloud platforms often requires large amounts on data to be transferred to and
from mobile devices to remote servers in the cloud, leading to unpredictable communication
latency problems [2]. It is with these considerations in mind that MEC was born [3] and has
emerged as a much-anticipated solution to remedy many of the shortcomings brought about
by the aforementioned problems. Meanwhile, the application of multi-objective evolutionary
algorithms in various fields [4-10] also provides new ideas to solve the problems in MEC.

In practical applications, MEC still has a lot of obstacles to overcome. Based on 4 million
apps, Alibaba’s statistics indicates that over 75% of applications (tasks) are made up of
dependent subtasks. Nevertheless, contemporary mobile apps frequently have several
interdependent subtasks. These dependence subtasks must be carried out in a certain order and
must be supported by particular services [11]. For example, the user must first input image
loading in a face recognition application; before face detection and feature extraction, the
image usually needs to be preprocessed; once the image loading and preprocessing are
completed, the next step is to detect the face in the image; after the face has been acquired
After obtaining the face’s feature representation, it can be recognized or its identity verified
by comparing it to the known features stored in the database. The following factors must be
carefully considered when offloading these dependency-aware subtasks to edge nodes:

•Dependency perception between subtasks: the execution order of subtasks is constrained
by the dependencies between them. A subtask can only start processing if it receives the output
from all predecessor subtasks, and it needs to forward the obtained results to the successor
subtasks for subsequent processing. For example, in the face recognition application described
above, "Face Detection" subtasks’ outputs are inputs to "Face Alignment" subtasks. Therefore,
the "Face alignment" subtask can only begin when the "Face detection" subtask is finished.

•Dependency-aware correlation between subtask offloading and service caching:
subtask execution depends on the support from the corresponding service, this means that the
corresponding services supporting subtask processing must be cached on edge servers where
subtasks are offloaded to. For example, the "positioning" sub-task of a map navigation task
should be offloaded to edge server which already caches GPS and BeiDou satellite services.

•Multi-user, resource-constrained scenarios pose challenges for dependency-aware
subtask offloading: a task is usually partitioned into multiple dependency subtasks for
offloading, the number of dependency subtasks to be offloaded (decision-variable dimensions)
will explode with the growth in the number of users, and edge servers typically with finite
compute and store resources. Therefore, how to assign these huge number of dependent
subtasks to appropriate edge servers (resource constrained) will greatly affect the offloading
efficiency in edge computing environments.

The dependency-aware subtask offloading and service caching strategies formulated after
comprehensive consideration of the above factors will be more applicable to realistic MEC
scenarios. It will greatly improve the subtask hit service rate and greatly improve the offloading
efficiency of the MEC system. It can also fully utilize the computing and storage resources of edge
servers in the MEC system to avoid the waste of resources. The main thing is that it improves the

1240 Shi et al.: Many-objective joint optimization for dependency-aware
task offloading and service caching in mobile edge computing

user experience and can provide users with low latency and low energy consumption.
The primary contributions of this paper can be summed up as follows:
1) To solve the joint optimization problem of dependency-aware subtask offloading and

service caching under multi-user, resource-constrained MEC environments, a many-
objective model for joint optimization of dependency-aware task offloading and service
caching (MaJDTOSC) is constructed, taking into account the dependency-awareness of
subtasks, the correlation between dependency-aware subtask offloading and service
caching, as well as the existence of the challenges of such environments.

2) In order to develop efficient, suitable and adaptable dependency subtask offloading,
service caching strategies for multi-user, resource constrained edge computing
environments. Five optimization objectives are set in MaJDTOSC: task completion time,
task processing energy consumption, subtask hit rate, load variability, and storage
resource utilization. Inter-subtask dependencies and resource-constrained edge servers
are also considered as their constraints.

3) Because the constructed MaJDTOSC belongs to many-objective optimization problem
and "dimension explosion" of decision variables occurs when the task is partitioned into
a series of perceptually dependent subtasks. A based on Three-Stages Mating Selection
(TSMS) strategy’s many-objective evolutionary algorithm TSMSNSGAIII is presented
to better solve MaJDTOSC to obtain a suitable and efficient dependency subtask
offloading and service caching decision.

2. Related Works
Due to its urgency and criticality, task offloading has steadily emerged as one of the main
research topics in the framework of MEC in recent years. Tang et al. [12] investigated the
problem of non-separable and latency-sensitive task offloading in dynamic edge-loaded
environments. They proposed a distributed algorithm based on model-free deep reinforcement
learning to solve the problem, aiming at minimizing the long-term cost. Zhou et al. [13]
investigated joint optimization issues for resource allocation and computational offloading for
dynamic multiuser MEC systems. Their objective was to minimize the energy consumption of
the entire MEC system. A reinforcement learning approach based on value iteration was
proposed to determine the resource allocation and computational offloading strategies. Xu et
al. [14] investigated how to minimize the task processing latency for Internet of Vehicles (IoV)
users in the presence of limited edge server resources. And they designed a fuzzy task
offloading and resource allocation scheme: using game theory to determine the optimal task
offloading strategy for IoV users, and using Q-learning to determine the resource allocation
strategy. Nguyen et al. [15] proposed a new collaborative block mining and task offloading
scheme for blockchain based MEC systems. In order to solve the latency issue created by
blockchain operations in MEC, a consensus mechanism was developed to maximize the utility
of the system. Yang et al. [16] studied a MEC system made up of mobile devices supporting
various radio access technologies and heterogeneous edge servers. They constructed the
process of determining the optimal offloading location as a Markov Decision Process (MDP)
which is solved using the Value Iteration Algorithm (VIA).

All of the above work focuses on how tasks are completely offloaded. Mobile applications
may have numerous interdependent tasks as modern MEC applications become more
complicated. Offloading dependent tasks is therefore required in many real-world MEC
applications. Zhao et al. [17] studied ways to offload dependency tasks to edge nodes with
service caches and designed a convex planning based algorithm to solve the problem. They

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 5, May 2024 1241

also studied a special case of the problem and presented an approximation algorithm with
bounded approximation factors to solve this case. Shen et al. [18] investigated the service
caching and dependency-aware task offloading problem of VEC. Their aim was to maximize
the offloading efficiency. To address the problem, they developed a semi-distributed algorithm
based on dynamic planning. A dependency-aware offloading approach based on edge cloud
collaboration was developed by Chen et al. [19]. They separated the offloading problem into
two subproblems: minimizing the application completion time in two different collaboration
models. The two subproblems were solved, respectively, by a greedy algorithm and an
efficient greedy method. The dependency task offloading problem was examined by Nguyen
et al. [20] in a cooperative UAV-assisted MEC scenario, and divides the problem into two
subproblems: communication resource allocation and offloading decision. A suboptimal
solution to the former problem is found using a meta-heuristic, meanwhile convex
optimization is used to address the second problem. An et al. [21] jointly optimized the
dependency task offloading strategy and the allocation strategy of communication and
computation resources under fast fading and slow fading channels. The aim is to minimize the
energy consumption of each IoT device. Yan et al. [22] explored methods to acquire the best
dependency task offloading and resource allocation policies. Their objective was to reduce the
weighted sum of user’s task execution time and energy consumption in two-user MEC
networks.

Actually, the influence of service caching on task offloading efficiency should be taken into
account in addition to dependent task offloading. For example, in Fig. 1, assume that four
dependency-aware subtasks need to be offloaded in a certain edge computing scenario. Among
them, subtask 3 depends on subtask 2 and subtask 4 depends on subtask 1. In the left figure,
assuming that all types of services are stored on all edge servers without considering the
service caching status, the optimization yields an offloading policy where subtasks 1 and 4 are
offloaded to edge server 1, and subtasks 2 and 3 are offloaded to edge server 2. While in the
right figure the actual edge caching situation is considered: services of types 2 and 4 are cached
on edge server 1, services of types 1 and 3 are cached on edge server 2 (i.e., there is only a
limited number of types of services that each edge server can cache.), and the optimization
yields an offloading policy as follows: subtasks 2 and sub-subtasks 4 are offloaded to edge
server 1, subtasks 1 and sub-subtasks 3 are offloaded to edge server 2. It is obvious that the
dependencies between subtasks and the service caching policy simultaneously affect the
development of offloading policies for dependent subtasks. Moreover, single-objective
optimization is often performed in previous work. In real world scenarios, the optimization
factors considered by users are often comprehensive and complex. Thus, in MEC scenarios,
this paper focuses on building a many-objective joint optimization dependency-aware task
offloading and service caching model and suggests an appropriate way to obtain subtask
offloading and service caching policies that greatly increase the offloading efficiency.

3. Proposed MaJDTOSC

3.1 Task Model
Each user has a task (consisting of multiple dependent subtasks) to process, a directed acyclic
graph (,)n n nG V E= can be used to represent each user task nT , where 1={ }n n,start n, n,exitV T ,T ,...,T
stands for the set of subtasks in task nT and , , ,{ , ,..., }start i start j k exit

n n n nE R R R= stands for the set of
subtask dependencies in task nT , where , , [1, 1] i j k exit and i j k∈ − ≠ ≠ . Fig. 2 illustrates the
dependency graph between subtasks in a task, where purple, green, red and blue lines represent

1242 Shi et al.: Many-objective joint optimization for dependency-aware
task offloading and service caching in mobile edge computing

four different types of subtasks that require support from the corresponding services in order
to be processed. ,n startT and ,n exitT represent the start subtask and exit subtask (indicated by
black lines) of task nT . Presume that Start Subtasks and Exit Subtasks can only be processed
locally because they typically require local data collection and local display of processing
results, respectively. ,n iT stands for the 𝑖𝑖𝑖𝑖ℎ intermediate subtask of task nT . In Fig. 2, we call
subtask ,2nT is the predecessor subtask of subtask ,4nT , and subtask ,4nT is the successor
subtask of subtask ,2nT .

, ,n i n jT TD represents the data forwarded by Subtask ,n iT to Subtask ,n jT .
The same implies that the input data of Subtask ,n jT is dependent on the output data of Subtask

,n iT . The dependency between them is denoted as ,i j
nR . Therefore, Subtask ,n jT cannot start its

execution without Subtask ,n iT s′ completion.

Fig. 1. Research motivation figure.

3.2 System Model
As indicated in Fig. 3, in this paper, the system model considers a three-layer MEC
architecture: 1) Cloud layer, 2) Edge layer, and 3) Device layer. The cloud layer is located at
the topmost layer in the three-tier architecture and consists of cloud servers, which have
unlimited computational and storage resources in which all types of services required by the
user are cached, and it is responsible for distributing the services to the various edge servers
based on the service caching policy. The edge layer belongs to the core layer in the three-tier
architecture, which mainly consists of multiple edge servers and base stations, each edge
server has only limited computing and storage resources, the edge servers communicate with
the users wirelessly through the base station, and the users can offload their tasks to the edge
servers for processing. The edge servers communicate with each other through wired means
and they can collaborate with each other to process tasks. The device layer, also known as the
user layer, consists of multiple users and is located at the lowest level of the three-tier
architecture. Different users have different tasks to be processed, and a task in turn consists of
multiple dependent subtasks, and different types of subtasks require the support of
corresponding services to be processed, and the dependencies between subtasks need to be
considered. Users offload these dependency-aware subtasks to the target edge server according
to the subtask offload policy.

Task Set

,1nT

,2nT

,3nT

,4nT

,1nT ,3nT

,2nT ,4nT

,2nT ,3nT

,1nT ,4nT

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 5, May 2024 1243

3.3 Data Rate Model

Fig. 2. Subtask dependency graph. Fig. 3. System model.

Three types of data rates are included in MaJDTOSC: 1) The data transfer rate when a user
uploads a subtask. 2) The data propagation rate of the subtask between edge servers. 3) The
data forwarding rate of the predecessor subtask. The data transfer rate between user n and
edge server k when offloading the ith subtask and the data propagation rate of the subtask
between edge server k ′ and edge server k are defined as:

 , ,
, , 2 2log (1)

k k
n i n ik k

n i n i

p h
R B

δ
⋅

= ⋅ + (1)

 , ,
, , 2 2

log (1)
k k k k
n i n ik k k k

n i n i
k k

p h
R B

δ

′ ′

′ ′

′

⋅
= ⋅ +

+ Λ
 (2)

where ,
k
n iB represents the channel bandwidth when user n uploads the ith subtask to edge

server k . ,
k
n ip represents the transmission power when user n uploads the ith subtask to the

edge server k , and ,
k
n ih represents the channel gain between user n and the edge server k

when offloading the ith subtask. 2δ represents the additive Gaussian white noise power. ,
k k
n iB ′

represents the channel bandwidth when the edge server k ′ propagates user n s′ ith subtask to
the edge server k . ,

k k
n ip ′ stands for the propagation power of the edge server k ′ to propagate

the ith subtask of user n to the edge server k , and ,
k k
n ih ′ stands for the channel gain of the edge

server k ′ when it propagates the ith subtask of user n to the edge server k . k k′Λ represents
the noise power between edge server k ′ and edge server k .

The data forwarding rate of the predecessor subtask i′ of the ith subtask of user n is
defined as:

, ,

, 2 2

,

, ,

, 2 2

log (1) (,) 0 || (,) 0

log (1) (,) & (,)

n i i n i i

n i i

k k k kn i i

n i i n i ik k

n i i

k k

p h
B if off n i off n i

R
p h

B if off n i k off n i k

δ

δ

′ ′

′

′ ′′

′ ′′

′

′

⋅
′⋅ + = =

=
⋅

′ ′⋅ + = =
+ Λ







 (3)

where (,)off n i represents the offloading location of the ith subtask of user n .
(,) 0 || (,) 0off n i off n i′ = = represents the case where at least one of the ith subtask of user n

and its predecessor subtask i′ is processed locally, denoted as case one.
(,) & (,)off n i k off n i k′ ′= = stands for the case where the ith subtask of user n and its

predecessor subtask i′ are processed on different edge servers, denoted as case two. ,n i iB ′
represents the channel bandwidth when the predecessor subtask i′ of the ith subtask of user
n forwards data to subtask i in case one, ,n i ip ′ represents the forwarding power when the

,n startT ,n exitT

,1nT

,2nT

,3nT

,4nT

,5nT

,6nT

,7nT

,8nT

,2
,4

n
nT TD

, , ,
1(,) = ({ },{ , ,..., })start i start j k exit

n n n n,start n, n,exit n n nG V E T ,T ,...,T R R R=

,1start
nR

,2start
nR

,3start
nR

1,4
nR

2,4
nR

3,5
nR

4,6
nR

6,exit
nR

7,exit
nR

8,exit
nR

4,8
nR

5,7
nR

1S 2S 3S 4S

1S

2S

1S

2S

3S

4S

2S

3S
S 1S E

3S

4S

1244 Shi et al.: Many-objective joint optimization for dependency-aware
task offloading and service caching in mobile edge computing

predecessor subtask i′ of the ith subtask of user n forwards data to subtask i in case one,
and ,n i ih ′ represents the channel gain when the predecessor subtask i′ of the ith subtask of user
n forwards data to subtask i in case one. ,

k k
n i iB ′

′ represents the channel bandwidth when the
predecessor subtask i′ of the ith subtask of user n forwards data to subtask i in case two,

,
k k
n i ip ′

′ represents the forwarding power when the predecessor subtask i′ of the ith subtask of
user n forwards data to subtask i in case two, and ,

k k
n i ih ′

′ represents the channel gain when the
predecessor subtask i′ of the ith subtask of user n forwards data to subtask i in case two.

3.4 Objective Model

3.4.1 Task Completion Time Objective
Task completion time is defined as the time taken from the start subtask execution to complete
the last subtask. The ith subtask of user n s′ actual completion time is as follows:
 ,(, ,) (, ,) , { {0}}k

A A n iSTFT n i k STST n i k ET k K= + ∀ ∈  (4)
where ,

k
n iET represents the time consumed by the ith subtask of user n to offload to the

edge server k (or local device) to perform the task. (, ,)ASTST n i k represents the time when the
ith subtask of user n is offloaded to the edge server k (or local device) to actually start
execution. Obviously a subtask cannot start execution without the output of its predecessor
subtasks, and it must also be checked if the edge server (or local device) is currently idle. This
leads to the definition of (, ,)ASTST n i k :
 (, ,) max{ { , , }, (, ,)}A TSTST n i k avail n i k STST n i k= (5)

where (, ,)TSTST n i k represents the time when the ith subtask of user n is offloaded to edge
server k (or local device) to theoretically start execution, i.e., the moment when edge server
k (or local device) has received and generated all of the input data required for the ith subtask.

{ , , }avail n i k indicates the moment when the local device or edge server is prepared to carry
out the task, i.e., the time when the edge server k and the local device are idle. In this paper,
we assume all edge servers as well as user devices are equipped with multi-core processors
that can handle multiple subtasks simultaneously, hence { , , } 0avail n i k = . (, ,)TSTST n i k is
defined recursively:
 ,(,)

(, ,) max ((,))T A n i ii p n i
STST n i k STFT n i DFT ′′∈

′= + (6)

where (,)p n i represents the set of direct predecessor subtasks of the ith subtask of user n .
,n i iDFT ′ represents the data forwarding time of the output of the predecessor subtask i′ in user

n to the edge server (or local device) where subtask i is offloaded. It is defined as:

 ,
,

,

n i i
n i i

n i i

d
DFT

R
′

′
′

= (7)

where ,n i id ′ represents the amount of data forwarded to subtask i by subtask i′ , the
predecessor of user n s′ ith subtask, and ,n i iR ′ represents the data forwarding rate. If

(,) (,)off n i off n i k′ = = represents that user n s′ subtask i performs tasks on the same edge
server as its predecessor subtask i′ , no data forwarding time is incurred, i.e., , 0n i iDFT ′ = .
Obviously, (, ,)ASTFT n exit k stands for the actual completion time of the exit subtask of user
n , and (, ,)ASTST n start k stands for the actual start of the execution time of the start subtask of

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 5, May 2024 1245

user n . Therefore, the task processing time of user n is (, ,) (, ,)A ASTFT n exit k STST n start k− .
This paper defines task completion time objective as the sum of all user task completion

times:

1
[(, ,) (, ,)]

N

A A
n

TCT STFT n exit k STST n start k
=

= −∑ (8)

3.4.2 Energy Consumption Objective
There are four main components to the energy consumption generated by mobile users:
computational energy consumption, transmission energy consumption, propagation energy
consumption, and forwarding energy consumption. Subtasks only generate computational
energy consumption when they are processed locally. If offloaded to an edge server, there are
transmission energy consumptions when uploading subtasks. Propagation energy consumption
is generated when subtasks are propagated between edge servers. Forwarding energy
consumption is incurred during forwarding of the predecessor subtask to the subtask. The
computational energy consumption of the ith subtask of user n is defined as:
 2

, , ,
c
n i n i n iEC f dκ= ⋅ ⋅ (9)

where κ stands for power efficiency, depending on chip architecture. ,n if represents the
CPU frequency for processing the ith subtask of user n . ,n id represents the amount of data to
be processed for the ith subtask of user n .
 The transmission energy consumed by user n when offloading the ith subtask, the
propagation energy consumption of the subtask between edge servers, and the forwarding
energy consumption of the predecessor subtask are defined as:

 ,
, ,

,

n it t
n i n i k

n i

d
EC P

R
= ⋅ (10)

 ,
, ,

,

n is s
n i n i k k

n i

d
EC P

R ′= ⋅ (11)

 ,
, ,

,

n i if f
n i i n i i

n i i

d
EC P

R
′

′ ′
′

= ⋅ (12)

where ,
t
n iEC represents the transmission energy consumption of the ith subtask of user n ,

,
s
n iEC stands for the propagation energy consumption of the ith subtask of user n , and ,

f
n i iEC ′

stands for the forwarding energy consumption of the predecessor subtasks of the ith subtask
of user n . ,

t
n iP , ,

s
n iP , and ,

f
n iP represent transmission, propagation, and forwarding power,

respectively. Use , 1,1 1,2 , 1 ,{ , ,..., , }n i N exit N exitx x x xχ −= to indicate the offloading decision for
subtasks in each task, if , 1n ix = means the subtask will be offloaded to the edge server for
processing, otherwise , 0n ix = means the subtask is processed locally. Use

, 1,1 1,2 , 1 ,{ , ,..., , }n i N exit N exity y y yγ −= to indicate whether the corresponding service is cached on the
edge server where the subtask is offloaded. If , 1n iy = represents that the corresponding service
is cached, , 0n iy = represents that the corresponding service is not cached. Therefore, the
energy consumption objective is defined as:

 , , , , , , ,
1 1

[() (1) ()]
exitN

t s f c f c
n i n i n i n i i i n i n i i i n i

n i
EC x y EC EC EC EC x EC EC′ ′

= =

= ⋅ ⋅ + + + + − ⋅ +∑∑ (13)

1246 Shi et al.: Many-objective joint optimization for dependency-aware
task offloading and service caching in mobile edge computing

where N represents the number of users (and also the number of tasks) and exit
represents the number of subtasks contained in the task.

3.4.3 Subtask Hit Rate Objective
The subtask hit rate objective is the number of subtasks successfully offloaded (i.e., subtasks
offloaded with corresponding services cached on the edge server) as a percentage of the
number of subtasks offloaded. ,

score
n iH represents the hit score situation of the ith subtask of

user n . If the subtask directly hits a service on the associated server score 1, i.e., , 1score
n iH = ; if

the subtask hits a service on the Collaboration Edge Server score 0.5, i.e., , 0.5score
n iH = ;

otherwise it means that the subtask does not hit the corresponding service and will be processed
locally, score 0, i.e., , 0score

n iH = . Therefore, the subtask hit rate objective is defined as:

, , ,

1 1

,
1 1

()
100%

exitN
score

n i n i n i
n i

exitN

n i
n i

x y H
STHR

x

= =

= =

⋅ ⋅
= ×
∑∑

∑∑
 (14)

where ,n ix is used to determine whether the ith subtask of user n is offloaded or not, and

,n iy represents the service cache on the target edge server where the ith subtask of user n is
offloaded.

3.4.4 Load Variability Objective
Load variability can be measured by the standard deviation of the server load. A larger
standard deviation value indicates a higher volatility of the load, i.e., the load is more variable.
A smaller standard deviation value indicates a less volatile load, i.e., less load variability. Less
load variability represents that all ESs in the MEC scenario fully utilize their computational
resources and avoid wastage of computational resources. By calculating load standard
deviation, the load variability can be quantified and used for the calculation of the load
variability objective. The formula for calculating load variability is defined as:

2

1
()

K

k Avg
k

var

Load Load
L

K
=

−
=
∑

 (15)

where K stands for the number of edge servers. kLoad stands for the load of the edge
server k . AvgLoad stands for the average load of the edge server.

3.4.5 Storage Resource Utilization Objective
Setting storage resource utilization as an optimization goal can provide multiple benefits,
including increased resource utilization efficiency, reduced energy consumption, improved
user experience, and support for large-scale deployments. This enhances overall system
performance and effectiveness by optimizing resource management and quality of service in
MEC environments. Its formula is defined as:

 1 1

1

()
100%

K L
l
k l

k l
K

k
k

y SDV
SRU

ESCC

= =

=

⋅
= ×
∑∑

∑
 (16)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 5, May 2024 1247

where l
ky represents whether edge server k caches a service of type l or not. lSDV

represents the storage space occupied by the l type− services. kESCC represents edge server
k s′ storage capacity.

In summary, the constructed MaJDTOSC is:

,

,

 . . {0,1}, , ,

 {0,1}, ,
 ,

k
n i

l
k

k kx y

min TCT s t x n N i I k K

min EC y k K l L
MaJDTOSC max STHR O ESOC k K

max L

∈ ∀ ∈ ∈ ∈

∈ ∀ ∈ ∈
= ≤ ∀ ∈

 ,

 = (()) & (), ,
var k k

start
k

SC ESCC k K

max SRU i finish p i avail k i I k K






 ≤ ∀ ∈
 ∀ ∈ ∈

 (17)

From formula 17, the decision variables for MaJDTOSC are composed of
1,1 1,2 ,{ , ,..., }k k k

n ix x x x= and 1 2y {y , ,..., }l l l
ky y= , and x and y represent the task offloading and

service caching policies, respectively. MaJDTOSC needs to minimize objectives TFT and
EC and maximize objectives STHR , varL and SRU . Its constraints are described on the right-
hand side of formula 17. where the first line ,

k
n ix represents whether the ith subtask of user n

is offloaded to edge server k , with 1 meaning it has been offloaded and 0 meaning it is
processed locally. The second line represents whether the l type− service is cached on the kth
edge server, where 1 means it is cached and 0 means it is not cached. kO represents the amount
of data offloaded to edge server k , and kESOC represents the offload capacity of edge server
k , therefore, the third line constraint states that no edge server’s offload capacity can be
exceeded by the volume of data offloaded. kSC represents the amount of storage resources
consumed by the caching service of edge server k , and kESCC stands for the cache capacity
of edge server k , therefore, the constraint in the fourth line implies that the quantity of data
stored in each edge server cannot exceed their cache capacity. In the fifth constraint line, the
set of subtask i s′ previous subtasks is denoted by ()p i . ()finish is used to determine whether
the predecessor subtasks have all completed their outputs, and ()avail is used to determine
whether the edge server (or local device) is ready. Subtask i can be executed only if both
conditions are satisfied.

4. Proposed TSMSNSGAIII

4.1 TSMSNSGAIII Framework
Researchers have thoroughly studied multi-objective evolutionary algorithms and designed
various optimization ideas [23-29]. In order to better solve MaJDTOSC in light of the
challenges that it faces, a many-objective evolutionary algorithm called TSMSNSGAIII based
on the Three-Stages Mating Selection (TSMS) strategy is presented in this study.
TSMSNSGAIII changes the mating selection strategy of NSGAIII and retains its
environmental selection strategy. In TSMSNSGAIII, the mating selection process is split into
three stages to balance convergence and diversity in the evolutionary process, focusing on
convergence, convergence & diversity, and diversity, respectively. The three-phase division
rule is defined as:

1248 Shi et al.: Many-objective joint optimization for dependency-aware
task offloading and service caching in mobile edge computing

 & < (1)

 (1) <
stag

max

max max

ma

e

x max

M
convergence if t r t
convergence diversity if r t t r t
diversity if r t t

S
t


= 


≤ ⋅
⋅ ≤ − ⋅
− ⋅ ≤

 (18)

where r is a parameter controlling the proportion of each stage, and r should be less than
0.5; in this paper, r is set to 0.2.

Algorithm 1 shows the framework of TSMSNSGAIII. As shown in Algorithm 1,
TSMSNSGAIII requires inputs of population size, number of optimization objectives,
maximum number of iterations, stage division ratio, cross-variance probability, and cross-
variance distribution index, and finally outputs the population obtained after optimization is
completed. Each individual in the population represents one of the given dependency subtask
offloading, service caching policies. TSMSNSGAIII is initialized by randomly generating an
initial population of size and a set of uniformly distributed reference points (lines 1∼2), and
then obtaining the ideal points of the initialized population (line 3). In the evolutionary process,
a three-stage mating selection strategy was first used to select the best individuals to join the
mating pool to generate the offspring population after cross mutation (lines 5∼12). After
generating the offspring population, combine it with the current population and update the
ideal point information (line 13), and then use the environment selection strategy of NSGAIII
to select the combined population to generate the next generation population (line 14). The
optimized population will be returned as soon as the maximum number of evaluations of the
function has been reached.

Algorithm 1 Framework of TSMSNSGAIII
Input: Population size: N , Number of objective: M , Maximum number of function evaluations:

maxt , Stage division ratio: r , Crossover probability: cp , Mutation probability: mp , Crossover
distribution index cλ , Mutation distribution index mλ .
Output: Final population: maxtP .
1: Initialize the Population: { }0 1 2, ,..., NP P P P← ;
2: (,)Z Uniformpoint N M← ;
3: *

0_ ()Z min obj P← ;
4: while maxt t< do
5: if maxt r t≤ ⋅ then
6: *1_ (, ,)t tP Phase MatingSelection N P Z′ ← ; (Reference algorithm 2)
7: elseif (1)max maxr t t r t⋅ < ≤ − ⋅ then
8: *2 _ (, , , ,)t t maxP Phase MatingSelection N P Z t t′ ← ; (Reference algorithm 3)
9: else
10: 3_ (,)t tP Phase MatingSelection N P′ ← ; (Reference algorithm 4)
11: endif
12: & (, , , ,)t t c m c mQ crossover mutation P p p λ λ′← ;
13: * _ _ ()t tZ Update min obj P Q← ∪ ;
14: *

1 (, , ,)_ t tt nvironmentSelection PP NSGAII E Q NI Z Z+ ∪← ;
15: endwhile

4.2 Three-Stage Mating Selection Strategy

4.2.1 First Phase
The algorithm needs to obtain better subtask offloading and service caching strategies as soon
as possible when it first starts solving MaJDTOSC, and the algorithm needs better convergence

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 5, May 2024 1249

performance. Therefore, algorithms in the mating selection of a stage (maxt r t≤ ⋅) is mainly
concerned with the performance of individual convergence performance, how to carry out the
judgment of convergence performance is a problem worth thinking about. This paper evaluates
the individual convergence performance using the Achievement Scalar Function (ASF) and
the Pareto dominance (PD) relationship. Pareto dominance relationship means that all the
objective values of one individual 1p are less than or equal to all the objective values of
another individual 2p and there is a less-than relationship on at least one objective value, if
this condition is satisfied, we say that the individual 1p dominates the individual 2p , denoted
as 1 2p p . The ASF belongs to the convergence discriminant, which guarantees the
convergence performance of an individual. Calculating an individual 1p s′ ASF value is
defined as follows:
 { }1 1*

1 1:
() () /p p

i i ii M
ASF p max f z λ

=
= − (19)

1

1

1
1:

p
p i

i p
j M j

f
f

λ
=

=
∑

 (20)

where *
iz represents the best value of objective i found among all individuals so far, 1p

if
represents the ith objective value of individual 1p , and 1p

iλ represents the weight vector of
an individual 1p on the ith objective, which is set to 610− if 1p

iλ equals to zero. The process
of calculating the ASF value of an individual 1p is as follows: first, the objective value is
transformed based on the ideal point information, then divided by the weight vector for
normalization, and finally the maximum value of it is taken. The ASF value reflects each
individual’s level of convergence. The smaller the ASF value of individual 1p , the better the
convergence performance. ASF values were used to the first and second stages of the mating
selection process.

Algorithm 2 shows the flow of mating selection one phase. As shown in Algorithm 2, the
mating Selection phase 1 requires inputs of population size, current population, and ideal
points, and finally outputs the parent population consisting of the individuals selected into the
mating pool. First, an empty set is created for storing the parent population (line 1), and then
the ASF values of all individuals in the current population are calculated according to formula
19 (lines 2∼4). Randomly select two individuals 1p , 2p from the current population , and
check the dominance relationship between them. If individual 1p dominates individual 2p ,
then individual 1p is added to the mating pool, and if individual 1p is dominated by individual

2p , then individual 2p is added to the mating pool. If the individuals do not dominate each
other, compare their ASF values and select the individual with the smaller ASF value to join
the mating pool. If two individuals have the same ASF value, one of these two individuals is
randomly selected to join the mating pool (lines 6∼19). Until the number of individuals in the
mating pool exceeds the size of the population, this mating selection process is stopped.

Algorithm 2 Phase 1 of MatingSelection
Input: Population size: N , Current population: tP , Ideal point: *Z .
Output: Mating pool: tP′ .
1: tP′ ←∅ ;
2: while i N≤ do
3: ()ASF i ← Calculate the ASF value for each individual according to formula 19;
4: endwhile

1250 Shi et al.: Many-objective joint optimization for dependency-aware
task offloading and service caching in mobile edge computing

5: while tP N′ ≤ do
6: Two individuals 1p and 2p are randomly selected from tP ;
7: if 1 2p p then
8: 1{ }t tP P p′ ′← ∪ ;
9: elseif 1 2p p then
10: 2{ }t tP P p′ ′← ∪ ;
11: else
12: if 1 2() ()ASF p ASF p< then
13: 1{ }t tP P p′ ′← ∪ ;
14: elseif 1 2() ()ASF p ASF p> then
15: 2{ }t tP P p′ ′← ∪ ;
16: else
17: 1 2{ (,)}t tP P random p p′ ′← ∪ ;
18: endif
19: endif
20: endwhile
21: return tP′ ;

4.2.2 Second Phase
The algorithms need to formulate sub-task offloading and service caching strategies that are
both appropriate and diverse in solving the MaJDTOSC mid-term, requiring both good
convergence and diversity of the algorithms. Therefore, the algorithm focuses on the overall
performance of individual convergence and diversity in the second stage of mating selection
((1)max maxr t t r t⋅ < ≤ − ⋅). The ASF, minimum clip angle, and Adaptive Comprehensive
Performance Score (ACPS) are used to judge individual convergence and diversity in this
stage. The calculation of the ASF has been given in the previous subsection. The formula for
calculating the minimum angle between an individual 𝑝𝑝1 and other individuals (2 2 1,p P p p∈ ≠)
in the population is defined as:
 2

1 1
2 2 1,

pmin
p pp P p p

minθ θ
∈ ≠

= (21)

1 2

2

1

1 2

* *

1

* 2 * 2

1 1

[() ()]

() ()

M
p p

i i i i
p i
p M M

p p
i i i i

i i

f z f z
arccos

f z f z
θ =

= =

− ∗ −
=

− ∗ −

∑

∑ ∑
 (22)

where P represents the current population, 2p represents other individuals in population P ,
and 2

1

p
pθ represents the angle between individual 1p and individual 2p . M represents the

number of objectives, 1p
if stands for the objective value of individual 1p on objective i , and

*
iz represents the ideal objective value on the ith objective. If the

1

min
p valueθ − of individual 1p

is large, it represents a better diversity of individual 1p . In this paper, an adaptive composite
performance scoring index is proposed for further judging individual performance, which is
defined as:

1

1

1

(1) ()
() max

min
p

max

t ASF p
t

ACPS p
t

t
θ

− ⋅
=

⋅
 (23)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 5, May 2024 1251

where t is the current number of objective function evaluations and maxt is the maximum
number of objective function evaluations. As the number of evaluations rises, ACPS
progressively modifies the weights given to convergence and diversity. A larger ACPS
represents a better overall performance of an individual under the current evolutionary stage.

The flow of the mating selection phase 2 is given in Algorithm 3. As shown in Algorithm
3, the mating Selection phase 2 requires inputs of population size, current population, ideal
point, current number of function evaluations, and maximum number of function evaluations,
and finally outputs the parent population consisting of the individuals selected into the mating
pool. First, an empty set is created to store the parent population (line 1), and then calculate
the ASF value, the minimum pinch angle, and the ACPS value for all individuals in the current
population according to formula 19, formula 21, and formula 23 (lines 2∼6). Randomly select
two individuals 1p , 2p from the current population tp , if the ASF value of an individual 1p
is smaller than the ASF value of an individual 2p and the minimum clip angle of an individual

1p is larger than the minimum clip angle of an individual 2p , then add the individual 1p to
the mating pool. If the ASF value of individual 1p is larger than the ASF value of individual

2p and the minimum clip angle of individual 1p is smaller than the minimum clip angle of
individual 2p , then individual 2p is added to the mating pool. If the above conditions are not
met, the ACPS values of the two individuals are compared, and the individual whose ACPS
value is higher is let into the mating pool; otherwise, one of the two individuals is randomly
selected to be added to the mating pool (lines 8∼20). Until the number of individuals in the
mating pool exceeds the size of the population, this mating selection process is stopped.

Algorithm 3 Phase 2 of MatingSelection
Input: Population size: N , Current population: tP , Ideal point: *Z , Current function evaluation times:
t , Maximum number of function evaluations: maxt .
Output: Mating pool: tP′ .
1: tP′ ←∅ ;
2: while i N≤ do
3: ()ASF i ← Calculate the ASF value for each individual according to formula 19;
4: ()min iθ ← Calculate the minθ value for each individual according to formula 21;
5: ()ACPS i ←Calculate the ACPS value for each individual according to formula 23;
6: endwhile
7: while tP N′ ≤ do
8: Two individuals 1p and 2p are randomly selected from tP ;
9: if 1 2 1 2() () & () ()min minASF p ASF p p pθ θ< > then
10: 1{ }t tP P p′ ′← ∪ ;
11: elseif 1 2 1 2() () & () ()min minASF p ASF p p pθ θ> < then
12: 2{ }t tP P p′ ′← ∪ ;
13: else
14: if 1 2() ()ACPS p ACPS p> then
15: 1{ }t tP P p′ ′← ∪ ;
16: elseif 1 2() ()ACPS p ACPS p< then
17: 2{ }t tP P p′ ′← ∪ ;
18: else
19: 1 2{ (,)}t tP P random p p′ ′← ∪ ;
20: endif

1252 Shi et al.: Many-objective joint optimization for dependency-aware
task offloading and service caching in mobile edge computing

21: endif
22: endwhile
23: return tP′ ;

4.2.3 Third Phase
Algorithms in solving MaJDTOSC late, the formulated sub-task offloading and service
caching strategies already have good convergence, need to improve the diversity of the
formulated strategies, that requires the algorithms to have good diversity. Therefore, the
algorithm focuses on the performance of individual diversity in the phase 3 of mating selection
((1) max maxr t t t− ⋅ < ≤). The minimum clip angle is used in this stage to judge the individual
diversity. The formula for calculating the minimum clip angle has been given in the previous
subsection. The flow of the phase 3 of mating selection is given in Algorithm 4. As shown in
Algorithm 4, the phase 3 of mating selection require the input of the population size, the
current population, and finally the output of the parent population consisting of the individuals
selected into the mating pool. First, an empty set is created for storing the parent population
(line 1), and then the minimum clip angle of all individuals in the current population is
calculated according to formula 21 (lines 2∼4). Two individuals are randomly selected from
the current population, and the individual with the larger minimum clip angle is selected to
join the mating pool. Until the number of individuals in the mating pool exceeds the size of
the population, this mating selection process is stopped.

Algorithm 4 Phase 3 of MatingSelection
Input: Population size: N , Current population: tP .
Output: Mating pool: tP′ .
1: tP′ ←∅ ;
2: while i N≤ do
3: ()min iθ ← Calculate the minθ value for each individual according to formula 21;
4: endwhile
5: while tP N′ ≤ do
6: Two individuals 1p and 2p are randomly selected from tP ;
7: if 1 2() ()min minp pθ θ> then
8: 1{ }t tP P p′ ′← ∪ ;
9: elseif 1 2() ()min minp pθ θ< then
10: 2{ }t tP P p′ ′← ∪ ;
11: else
12: 1 2{ (,)}t tP P random p p′ ′← ∪ ;
13: endif
14: endwhile
15: return tP′ ;

4.2.4 TSMSNSGAIII Time Complexity Analysis
In the TSMSNSGAIII calculation process, the time complexity of the algorithm mainly comes
from:1) population initialization; 2) three-stage mating selection process; 3) environment
selection process. The algorithm starts to execute by first randomly generating N individuals,
so the time complexity of population initialization is ()O N . The first stage of mating selection
requires picking N individuals based on the Pareto dominance relation and ASF values, with

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 5, May 2024 1253

time complexity ()O MN ; the second stage picks based on the ASF values and the minimum
clip angle, with time complexity 2()O MN ; and the third stage picks based on the minimum
clip angle only, with time complexity 2()O MN . Therefore, the time complexity of the whole
mating selection process is 2()O MN . Since the environment selection is based on the NSGAIII
algorithm, the time complexity of the environment selection process is ()O MNH , where H
represents the number of reference points. In summary, the time complexity of TSMSNSGAIII
is 2()O MN .

5. Experiment

5.1 TSMSNSGAIII Performance Test
In this paper, five excellent many-objective evolutionary algorithms were used with
TSMSNSGAIII on the DTLZ test set using Inverted Generational Distance (IGD) metrics,
they are NSGAIII [30], hpaEA [31], MaOEADDFC [32], SPEAR [33], KnEA [34]. Table 1
demonstrates the parameter settings in TSMSNSGAIII, where the first four parameters follow
the default settings of the NSGAIII algorithm, and the fifth parameter is used to control the
ratio of the three phases, which is recommended to be set to: 0 0.2r< ≤ if the algorithm is
required to have a strong comprehensive performance, and 0.2 0.5r< < if convergence or
diversity is sought for a single performance. Table 2 demonstrates the test results. It uses "+",
"-", and "=" to represent that the comparison algorithms outperform, underperform, and equal
the TSMSNSGAIII performance, respectively, and also makes use of the blue color to
highlight the best results on the various test problems.

Table 1. TSMSNSGAIII Parameter Settings
Parameters Description Value

cp Probability of simulated binary crossover 1
cλ The distribution index of simulated binary crossover 20
mp Probability of polynomial mutation 1/ N
mλ The distribution index of polynomial mutation 20

r Stage division ratio 0.2

As can be seen from Table 2, TSMSNSGAIII shows a definite performance advantage over

other algorithms for the benchmarking problems DTLZ1, DTLZ3, DTLZ5, DTLZ6 with the
number of targets set to 5, 7, 9, 11, and 13.

Slightly worse than KnEA for most target number settings of DTLZ2, DTLZ4, but better
than KnEA when the target number of DTLZ2 is set to 5. The number of advantages and
disadvantages is more balanced when comparing with other algorithms.

On the DTLZ7 there is still a definite performance advantage at all other target number
settings, except for a slight inferiority to KnEA at target number setting of 9.

Overall, TSMSNSGAIII achieves excellent performance on the DTLZ test set.

1254 Shi et al.: Many-objective joint optimization for dependency-aware
task offloading and service caching in mobile edge computing

Table 2. IGD performance test of TSMSNSGAIII algorithm on DTLZ
Problem M D NSGAIII hpaEA MaOEADDFC SPEAR KnEA TSMSNSGAIII

DTLZ1

5 9 5.0035e-1 (3.06e-1) = 7.1033e-1 (5.08e-1) - 8.1223e-1 (3.87e-1) - 1.2821e+0 (5.33e-1) - 8.3796e-1 (5.81e-1) - 3.8848e-1 (2.54e-1)
7 11 1.0629e+0 (7.22e-1) - 2.1369e+0 (9.78e-1) - 3.1891e+0 (1.93e+0) - 2.8427e+0 (1.29e+0) - 4.8318e+0 (2.93e+0) - 4.9308e-1 (2.80e-1)
9 13 1.3658e+0 (6.14e-1) - 2.4477e+0 (9.83e-1) - 8.5617e+0 (6.22e+0) - 2.4563e+0 (1.51e+0) - 8.0522e+0 (8.45e+0) - 5.3335e-1 (2.84e-1)
11 15 1.5202e+0 (1.03e+0) - 3.2323e+0 (1.57e+0) - 1.7165e+1 (1.15e+1) - 4.1597e+0 (2.45e+0) - 9.0753e+0 (1.27e+1) - 4.8441e-1 (2.20e-1)
13 17 8.6966e-1 (4.70e-1) = 3.3741e+0 (1.24e+0) - 1.7291e+1 (7.75e+0) - 6.7981e+0 (2.54e+0) - 1.2900e+1 (1.10e+1) - 6.8286e-1 (3.12e-1)

DTLZ2

5 14 2.1622e-1 (1.14e-3) = 2.1554e-1 (2.65e-3) = 2.2398e-1 (2.31e-3) - 2.3191e-1 (5.02e-3) - 2.3329e-1 (5.23e-3) - 2.1580e-1 (7.66e-4)
7 16 3.6128e-1 (3.34e-2) + 3.7946e-1 (1.44e-2) + 3.8967e-1 (1.83e-2) - 3.8631e-1 (7.27e-3) - 3.6981e-1 (1.37e-2) + 3.8364e-1 (7.01e-2)
9 18 4.8942e-1 (7.96e-2) + 5.0174e-1 (2.67e-2) = 6.1715e-1 (4.94e-2) = 4.4188e-1 (2.17e-2) + 4.9396e-1 (1.56e-2) = 5.5912e-1 (9.35e-2)
11 20 5.8860e-1 (3.50e-2) + 6.4769e-1 (3.99e-2) = 7.5893e-1 (6.98e-2) - 6.1438e-1 (3.04e-2) + 5.3831e-1 (1.50e-2) + 6.3303e-1 (2.99e-2)
13 22 6.4542e-1 (3.45e-2) = 7.6038e-1 (3.76e-2) - 8.5505e-1 (7.83e-2) - 7.2117e-1 (4.54e-2) - 5.9542e-1 (3.80e-2) + 6.5899e-1 (2.42e-2)

DTLZ3

5 14 2.0587e+1 (7.71e+0) - 2.7698e+1 (1.23e+1) - 3.4353e+1 (1.21e+1) - 3.5204e+1 (1.07e+1) - 2.2615e+1 (6.79e+0) - 1.0808e+1 (4.61e+0)
7 16 4.0786e+1 (1.23e+1) - 9.1856e+1 (2.30e+1) - 1.3671e+2 (3.93e+1) - 1.0163e+2 (2.59e+1) - 1.0565e+2 (3.10e+1) - 1.8853e+1 (1.07e+1)
9 18 4.9367e+1 (2.10e+1) - 9.8379e+1 (2.19e+1) - 3.0093e+2 (6.95e+1) - 7.4604e+1 (2.36e+1) - 2.2582e+2 (8.38e+1) - 2.4212e+1 (1.00e+1)
11 20 4.8544e+1 (2.32e+1) - 1.0337e+2 (2.41e+1) - 4.2610e+2 (7.57e+1) - 1.6707e+2 (4.47e+1) - 3.0078e+2 (1.48e+2) - 2.4741e+1 (1.09e+1)
13 22 4.6073e+1 (2.10e+1) - 1.1606e+2 (2.91e+1) - 4.4387e+2 (9.68e+1) - 2.1248e+2 (4.59e+1) - 3.4328e+2 (1.72e+2) - 2.7671e+1 (1.01e+1)

DTLZ4

5 14 3.1130e-1 (1.17e-1) + 4.8496e-1 (1.76e-1) + 3.2078e-1 (1.19e-1) + 2.4681e-1 (1.09e-2) + 3.2818e-1 (1.14e-1) + 6.9640e-1 (2.67e-1)
7 16 4.3175e-1 (9.06e-2) + 5.4596e-1 (1.45e-1) = 5.2451e-1 (5.68e-2) = 4.1398e-1 (2.10e-2) + 3.9058e-1 (4.76e-2) + 5.1378e-1 (8.10e-2)
9 18 5.4026e-1 (8.12e-2) + 6.1650e-1 (7.90e-2) = 7.3844e-1 (5.81e-2) - 5.6967e-1 (2.34e-2) + 5.0050e-1 (9.67e-3) + 5.7693e-1 (7.65e-2)
11 20 5.9578e-1 (5.59e-2) = 7.1343e-1 (5.64e-2) - 8.6763e-1 (1.02e-1) - 6.6392e-1 (3.06e-2) - 5.3710e-1 (5.90e-3) + 6.2001e-1 (4.09e-2)
13 22 6.5087e-1 (3.01e-2) = 8.0061e-1 (5.48e-2) - 9.3719e-1 (9.61e-2) - 7.4588e-1 (3.51e-2) - 6.0056e-1 (6.13e-3) + 6.6089e-1 (2.22e-2)

DTLZ5

5 14 1.6175e-1 (4.25e-2) - 1.6439e-1 (2.74e-2) - 3.6231e-1 (1.96e-1) - 2.4221e-1 (9.91e-2) - 2.0484e-1 (4.75e-2) - 7.4630e-2 (2.30e-2)
7 16 2.0970e-1 (3.24e-2) - 3.0911e-1 (5.22e-2) - 1.7155e+0 (2.96e-1) - 5.6717e-1 (1.32e-1) - 2.7604e-1 (6.31e-2) - 1.3038e-1 (2.05e-2)
9 18 2.7134e-1 (6.10e-2) - 4.0732e-1 (6.82e-2) - 2.1849e+0 (9.07e-2) - 4.8644e-1 (8.45e-2) - 3.6999e-1 (1.03e-1) - 1.1816e-1 (2.07e-2)
11 20 2.9177e-1 (4.96e-2) - 5.3135e-1 (9.33e-2) - 2.2906e+0 (1.19e-1) - 6.7444e-1 (2.77e-1) - 3.9327e-1 (8.70e-2) - 1.9758e-1 (4.73e-2)
13 22 3.2331e-1 (4.45e-2) - 5.8488e-1 (6.83e-2) - 2.3064e+0 (1.20e-1) - 1.1950e+0 (1.60e-1) - 5.1186e-1 (1.52e-1) - 2.0130e-1 (2.86e-2)

DTLZ6

5 14 1.5844e+0 (6.64e-1) - 2.7003e+0 (8.27e-1) - 4.0085e+0 (1.08e+0) - 2.7553e+0 (7.48e-1) - 1.2107e+0 (7.44e-1) - 7.2267e-1 (6.38e-1)
7 16 3.6969e+0 (9.85e-1) - 5.6699e+0 (8.76e-1) - 8.7117e+0 (4.17e-1) - 7.2730e+0 (6.68e-1) - 2.4519e+0 (5.14e-1) - 2.0669e+0 (9.87e-1)
9 18 4.7020e+0 (8.09e-1) - 5.1617e+0 (6.35e-1) - 9.1436e+0 (2.30e-1) - 5.1582e+0 (1.10e+0) - 2.9678e+0 (4.99e-1) - 1.9307e+0 (9.65e-1)
11 20 4.9322e+0 (9.53e-1) - 6.0111e+0 (5.45e-1) - 9.0743e+0 (3.03e-1) - 8.3884e+0 (5.39e-1) - 3.1118e+0 (4.54e-1) - 2.4958e+0 (1.10e+0)
13 22 4.7919e+0 (9.95e-1) - 6.5463e+0 (5.88e-1) - 9.1985e+0 (2.77e-1) - 9.0648e+0 (3.87e-1) - 3.3198e+0 (5.62e-1) - 2.6468e+0 (1.15e+0)

DTLZ7

5 24 4.8570e-1 (7.08e-2) - 6.8643e-1 (2.70e-1) - 6.6143e-1 (2.59e-1) - 5.6439e-1 (9.35e-2) - 4.5482e-1 (1.72e-1) = 3.7654e-1 (2.76e-2)
7 26 1.2673e+0 (2.72e-1) - 1.3526e+0 (3.15e-1) - 1.1221e+0 (1.20e-1) - 2.1009e+0 (3.22e-1) - 9.1244e-1 (2.73e-1) - 7.3020e-1 (4.25e-2)
9 28 5.6108e+0 (1.62e+0) - 6.6116e+0 (1.77e+0) - 3.5192e+0 (7.76e-1) - 1.0478e+1 (4.01e+0) - 1.3702e+0 (3.11e-1) = 1.6223e+0 (6.40e-1)
11 30 6.0230e+0 (9.21e-1) - 7.5748e+0 (1.77e+0) - 6.8515e+0 (1.35e+0) - 7.6702e+0 (1.18e+0) - 5.4859e+0 (2.12e+0) - 2.7465e+0 (5.53e-1)
13 32 8.0454e+0 (1.24e+0) - 1.2266e+1 (1.45e+0) - 1.0404e+1 (2.07e+0) - 1.0567e+1 (1.04e+0) - 1.1249e+1 (2.22e+0) - 4.9619e+0 (7.37e-1)

+/-/= 6/23/6 2/28/5 1/32/2 5/30/0 8/24/3

5.2 TSMSNSGAIII Solving for MaJDTOSC

5.2.1 Simulation Experiment Parameter Setting
Table 3 shows the parameters of the multi-user MEC scenario.

Table 3. Multi-user MEC scenario parameter settings
Parameters Description Value
 Communication range 22.2 2.2 km×
 Subtask type 1 ~ 5
 Number of subtasks contained in the task 8 ~ 12
ESCC Edge server cache capacity 12 ~ 14 GB
ESOC Edge server offload capacity 130 ~ 190 GB

2σ Noise power 15 ~ 25 -dBm
K Energy conversion efficiency 610−
N Number of users 40 ~ 60
M Number of edge servers 10
B Channel bandwidth 80 ~ 200 Mbps
h Channel gain 1.08 ~ 1.50
p Signal transmission power 14 ~ 49 W
f Computing capability 100 ~ 1000 cycle/s
ds Task size 1 ~ 5 GB

5.2.2 Analysis of Simulation Experiment Results
In Fig. 5 to Fig. 9, the performance of TSMSNSGAIII solving MaJDTOSC is evaluated under
different number of users settings. The results show that as the number of users increases, the
task completion time, energy consumption, and load variability objectives become larger in
the MEC environment. Whereas, the subtask hit rate and storage resource utilization objectives
show stable performance under different number of users settings. Compared to the other five
many-objective evolutionary algorithms, TSMSNSGAIII demonstrates a performance
advantage in solving MaJDTOSC: in the task completion time objective, TSMSNSGAIII
always provides the optimal objective value of the task completion time, irrespective of the
number of users anticipated in the MEC setting; in the energy consumption objective, with the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 5, May 2024 1255

number of users set to be 40, the For the energy consumption objective, TSMSNSGAIII
achieves the optimal performance when the number of users is set to 40. When the number of
users is set to 50, it is slightly worse than KnEA, and when the number of users is set to 60, it
is slightly worse than hpaEA and KnEA. The reason for the above phenomenon is that because
the energy consumption of subtasks when offloading is inevitably higher than the energy
consumption of the local computation, the lower energy consumption objective value
represents the fact that most of the subtasks fail in hitting the objective edge servers and choose
to perform the computation locally instead of offloading it to the appropriate edge servers.
Alternatively, the algorithm does not make a good trade-off between multiple objectives,
which is achieved by the energy objective value obtained when solving MaJDTOSC in
TSMSNSGAIII. Therefore, it is also concluded that TSMSNSGAIII performs excellently on
the energy consumption objective value; on the subtask hit rate objective, TSMSNSGAIII also
performs the best under all the user number setting conditions, indicating that the subtasks in
the MEC environment are offloaded to the appropriate edge servers; on the load variability
objective, TSMSNSGAIII always enables all the edge servers in the mobile In the load
variability objective, TSMSNSGAIII always makes full use of the computing resources of all
edge servers in the MEC environment; in the storage resource utilization objective,
TSMSNSGAIII always allocates all types of services to the appropriate edge servers to support
the computation of the corresponding subtasks.

Fig. 5. ~ Fig. 9. Performance of six many-objective evolutionary algorithms on five objectives with

different numbers of users.

In Fig. 10 to Fig. 14, the convergence curves of six many-objective evolutionary algorithms
for solving MaJDTOSC with the number of users set to 50 are tested. The number of iterations
is set to 1000 in this paper. In terms of the energy consumption objective, TSMSNSGAIII can
reach the excellent objective value and remain stable with only 200 iterations compared to the
other many-objective evolutionary algorithms. For task completion time, subtask hit rate, and
cache resource utilization objectives, TSMSNSGAIII needs only 300 iterations to obtain the
optimal objective values and maintain stability. For the load variability objective,
TSMSNSGAIII obtains the optimal objective value with less fluctuation compared to other
algorithms, showing good convergence and stability.

40 50 60
0

1×103

2×103

3×103

4×103

5×103

6×103

7×103

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Number of Users

 NSGAIII
 hpaEA
 MaOEADDFC
 SPEAR
 KnEA
 TSMSNSGAIII

40 50 60
0

4×105

8×105

1×106

2×106

2×106

2×106

3×106

3×106

4×106

4×106

En
er

gy
 C

on
su

m
pt

io
n

(M
J)

Number of Users

 NSGAIII
 hpaEA
 MaOEADDFC
 SPEAR
 KnEA
 TSMSNSGAIII

40 50 60
0

10

20

30

40

50

60

70

80

90

100

Su
bt

as
k

H
it

R
at

e
(%

)

Number of Users

 NSGAIII
 hpaEA
 MaOEADDFC
 SPEAR
 KnEA
 TSMSNSGAIII

40 50 60
0

1×104

2×104

3×104

4×104

5×104

Lo
ad

 V
ar

ia
bi

lit
y

(M
)

Number of Users

 NSGAIII
 hpaEA
 MaOEADDFC
 SPEAR
 KnEA
 TSMSNSGAIII

40 50 60
0

10

20

30

40

50

60

70

80

90

100

St
or

ag
e

R
es

ou
rc

e
U

til
iz

at
io

n
(%

)

Number of Users

 NSGAIII
 hpaEA
 MaOEADDFC
 SPEAR
 KnEA
 TSMSNSGAIII

1256 Shi et al.: Many-objective joint optimization for dependency-aware
task offloading and service caching in mobile edge computing

Fig. 10. ~ Fig. 14. Iterations of six many-objective evolutionary algorithms on five objectives.

6. Conclusion
In this paper, we study the problem of joint optimization of dependency-aware subtask
offloading and service caching in a multi-user, resource-constrained MEC scenario. After
comprehensively considering the impact of dependency-aware subtasks, resource constraints
of edge servers, and multi-users on the formulation of task offloading and service caching
policies, we construct a many-objective joint optimization model for dependency-aware task
offloading and service caching (MaJDTOSC), in which five optimization objectives are
considered: task completion time, energy consumption, subtask hit rate, load variability, and
storage resource utilization. In order to solve MaJDTOSC better, a many-objective
evolutionary algorithm TSMSNSGAIII based on the Three-Stages Mating Selection (TSMS)
strategy is proposed. Simulation results show that TSMSNSGAIII exhibits excellent
performance compared to the other five many-objective evolutionary algorithms in solving
models set with different numbers of users. Therefore, it is concluded that TSMSNSGAIII can
provide suitable sub-task offloading and service caching strategies in multi-user, resource-
constrained MEC scenarios.

Acknowledgement
This work is supported by the National Natural Science Foundation of China under Grant
No.61806138, No.61772478, No.U1636220, Science and Technology Development
Foundation of the Central Guiding Local under Grant No. YDZJSX2021A038, Australian
Research Council (ARC) projects DP190101893, DP170100136, and LP180100758. China
University Industry-University-Research Collaborative Innovation Fund (Future Network
Innovation Research and Application Project), No.2021FNA04014. Taiyuan University of
Science and Technology Scientific Research Initial Funding(TYUST SRIF), No.20232087,
and the Shanxi University Science and Technology Innovation Funding, No.2023L177.

0 200 400 600 800 1000
0

2×103

4×103

6×103

8×103

1×104

1×104

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Number of Iterations

 NSGAIII
 hpaEA
 MaOEADDFC
 SPEAR
 KnEA
 TSMSNSGAIII

0 200 400 600 800 1000
0

5×105

1×106

2×106

2×106

3×106

3×106

4×106

4×106

5×106

5×106

En
er

gy
 C

on
su

m
pt

io
n

(M
J)

Number of Iterations

 NSGAIII
 hpaEA
 MaOEADDFC
 SPEAR
 KnEA
 TSMSNSGAIII

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

90

100

Su
bt

as
k

H
it

R
at

e(
%

)

Number of Iterations

 NSGAIII
 hpaEA
 MaOEADDFC
 SPEAR
 KnEA
 TSMSNSGAIII

0 200 400 600 800 1000
0

1×104

2×104

3×104

4×104

5×104

6×104

7×104

8×104

9×104

1×105

1×105

Lo
ad

 V
ar

ia
bi

lit
y(

M
)

Number of Iterations

 NSGAIII
 hpaEA
 MaOEADDFC
 SPEAR
 KnEA
 TSMSNSGAIII

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

90

100

St
or

ag
e

R
es

ou
rc

e
U

til
iz

at
io

n(
%

)

Number of Iterations

 NSGAIII
 hpaEA
 MaOEADDFC
 SPEAR
 KnEA
 TSMSNSGAIII

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 5, May 2024 1257

References
[1] Li, S. C., Xu, L. D. and Zhao, S. S., “5G Internet of Things: A survey,” Journal of Industrial

Information Integration, 10, 1-9, Jun 2018. Article (CrossRef Link)
[2] Kong, L. H., Tan, J. L., Huang, J. Q., Chen, G. H., Wang, S. T., Jin, X., Zeng, P., Khan, M. and

Das, S. K., “Edge-computing-driven Internet of Things: A Survey,” Acm Computing Surveys, 55(8),
1-41, Aug 2023. Article (CrossRef Link)

[3] Mach, P. and Becvar, Z., “Mobile Edge Computing: A Survey on Architecture and Computation
Offloading,” IEEE Communications Surveys and Tutorials, 19(3), 1628-1656, 2017.
Article (CrossRef Link)

[4] Aishwaryaprajna, Kirubarajan, T., Tharmarasa, R. and Rowe, J. E., “UAV path planning in
presence of occlusions as noisy combinatorial multi-objective optimisation,” International Journal
of Bio-Inspired Computation, 21(4), 209-217, 2023. Article (CrossRef Link)

[5] Das, G., “Techno-economic analysis of novel multi-objective soft computing technique,”
International Journal of Bio-Inspired Computation, 20(3), 172-182, 2022. Article (CrossRef Link)

[6] Wang, H., “Research on VLSI layout method based on spatial evolutionary
algorithm,"International Journal of Computing Science and Mathematics, 18(2), 176-188, 2023.
Article (CrossRef Link)

[7] Ma, X., Fu, Y., Gao, K., Zhu, L. and Sadollah, A., “A multi-objective scheduling and routing
problem for home health care services via brain storm optimization,” Complex System Modeling
and Simulation, 3(1), 32-46, 2023. Article (CrossRef Link)

[8] Semujju, S. D., Huang, H., Liu, F., Xiang, Y. and Hao, Z., “Search-Based Software Test Data
Generation for Path Coverage Based on a Feedback-Directed Mechanism," Complex System
Modeling and Simulation, 3(1), 12-31, 2023. Article (CrossRef Link)

[9] Shen, X., Lu, J., You, X., Song, L. and Ge, Z., “A region enhanced discrete multi-objective
fireworks algorithm for low-carbon vehicle routing problem,” Complex System Modeling and
Simulation, 2(2), 142-155, 2022. Article (CrossRef Link)

[10] Shu, Z., Song, A., Wu, G. and Pedrycz, W., “Variable reduction strategy integrated variable
neighborhood search and nsga-ii hybrid algorithm for emergency material scheduling,” Complex
System Modeling and Simulation, 3(2), 83-101, 2023. Article (CrossRef Link)

[11] Shu, C., Zhao, Z. W., Han, Y. P., Min, G. Y. and Duan, H. C., “Multi-User Offloading for Edge
Computing Networks: A Dependency-Aware and Latency-Optimal Approach,” IEEE Internet of
Things Journal, 7(3), 1678-1689, Mar 2020. Article (CrossRef Link)

[12] Tang, M. and Wong, V. W. S., “Deep Reinforcement Learning for Task Offloading in Mobile Edge
Computing Systems,” IEEE Transactions on Mobile Computing, 21(6), 1985-1997, Jun 2022.
Article (CrossRef Link)

[13] Zhou, H., Jiang, K., Liu, X. X., Li, X. H. and Leung, V. C. M., “Deep Reinforcement Learning for
Energy-Efficient Computation Offloading in Mobile-Edge Computing,” IEEE Internet of Things
Journal, 9(2), 1517-1530, Jan 2022. Article (CrossRef Link)

[14] Xu, X. L., Jiang, Q. T., Zhang, P. M., Cao, X. F., Khosravi, M. R., Alex, L. T., Qi, L. Y. and Dou,
W. C., “Game Theory for Distributed IoV Task Offloading With Fuzzy Neural Network in Edge
Computing,” IEEE Transactions on Fuzzy Systems, 30(11), 4593-4604, Nov 2022.
Article (CrossRef Link)

[15] Nguyen, D. C., Ding, M., Pathirana, P. N., Seneviratne, A., Li, J. and Poor, H. V., “Cooperative
Task Offloading and Block Mining in Blockchain-Based Edge Computing With Multi-Agent Deep
Reinforcement Learning,” IEEE Transactions on Mobile Computing, 22(4), 2021-2037, Apr 2023.
Article (CrossRef Link)

[16] Yang, G. S., Hou, L., He, X. Y., He, D. J., Chan, S. and Guizani, M., “Offloading Time
Optimization via Markov Decision Process in Mobile-Edge Computing,” IEEE Internet of Things
Journal, 8(4), 2483-2493, Feb 2021. Article (CrossRef Link)

[17] Zhao, G. M., Xu, H. L., Zhao, Y. M., Qiao, C. M. and Huang, L. S., “Offloading Tasks With
Dependency and Service Caching in Mobile Edge Computing,” IEEE Transactions on Parallel
and Distributed Systems, 32(11), 2777-2792, Nov 2021. Article (CrossRef Link)

https://doi.org/10.1016/j.jii.2018.01.005
https://doi.org/10.1145/3555308
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1504/ijbic.2023.132789
https://doi.org/10.1504/ijbic.2022.10052581
https://doi.org/10.1504/ijcsm.2023.10056284
https://doi.org/10.23919/CSMS.2022.0025
https://doi.org/10.23919/CSMS.2022.0027
https://doi.org/10.23919/CSMS.2022.0008
https://doi.org/10.23919/CSMS.2023.0006
https://doi.org/10.1109/JIOT.2019.2943373
https://doi.org/10.1109/TMC.2020.3036871
https://doi.org/10.1109/JIOT.2021.3091142
https://doi.org/10.1109/TFUZZ.2022.3158000
https://doi.org/10.1109/TMC.2021.3120050
https://doi.org/10.1109/JIOT.2020.3033285
https://doi.org/10.1109/TPDS.2021.3076687

1258 Shi et al.: Many-objective joint optimization for dependency-aware
task offloading and service caching in mobile edge computing

[18] Shen, Q. Q., Hu, B. J. and Xia, E. J., “Dependency-Aware Task Offloading and Service Caching
in Vehicular Edge Computing,” IEEE Transactions on Vehicular Technology, 71(12), 13182-
13197, Dec 2022. Article (CrossRef Link)

[19] Chen, L., Wu, J. G., Zhang, J., Dai, H. N., Long, X. and Yao, M. Y., “Dependency-Aware
Computation Offloading for Mobile Edge Computing With Edge-Cloud Cooperation,” IEEE
Transactions on Cloud Computing, 10(4), 2451-2468, Oct 2022. Article (CrossRef Link)

[20] Nguyen, L. X., Tun, Y. K., Dang, T. N., Park, Y. M., Han, Z. and Hong, C. S., “Dependency Tasks
Offloading and Communication Resource Allocation in Collaborative UAV Networks: A
Metaheuristic Approach,” IEEE Internet of Things Journal, 10(10), 9062-9076, May 2023.
Article (CrossRef Link)

[21] An, X. M., Fan, R. F., Hu, H., Zhang, N., Atapattu, S. and Tsiftsis, T. A., “Joint Task Offloading
and Resource Allocation for IoT Edge Computing With Sequential Task Dependency,” IEEE
Internet of Things Journal, 9(17), 16546-16561, Sept 2022. Article (CrossRef Link)

[22] Yan, J., Bi, S. Z., Zhang, Y. J. and Tao, M. X., “Optimal Task Offloading and Resource Allocation
in Mobile-Edge Computing With Inter-User Task Dependency,” IEEE Transactions on Wireless
Communications, 19(1), 235-250, Jan 2020. Article (CrossRef Link)

[23] Xiao, S., Wang, W., Wang, H. and Huang, Z., “A new multi-objective artificial bee colony
algorithm based on reference point and opposition,” International Journal of Bio-Inspired
Computation, 19(1), 18-28, 2022. Article (CrossRef Link)

[24] Wang, S., Ma, D., Ren, Z., Qu, Y. and Wu, M., “An adaptive multi-objective particle swarm
optimisation algorithm based on fitness distance to streamline repository,” International Journal
of Bio-Inspired Computation, 20(4), 209-219, 2022. Article (CrossRef Link)

[25] Usman, A. M., Yusof, U. K. and Naim, S., “Filter-based feature selection: a comparison among
binary and continuous Cuckoo optimisation algorithms along with multi-objective optimisation
algorithms using gain ratio-based entropy,” International Journal of Bio-Inspired Computation,
20(3), 183-192, 2022. Article (CrossRef Link)

[26] Lan, H.-y., Xu, G. and Yang, Y.-q., “An enhanced multi-objective particle swarm optimisation
with Levy flight,” International Journal of Computing Science and Mathematics, 17(1), 79-94,
2023. Article (CrossRef Link)

[27] Pan, N., Lv, L., Fan, T. and Kang, P., “A multi-objective firefly algorithm combining logistic
mapping and cross-variation,” International Journal of Computing Science and Mathematics,
18(3), 255-265, 2023. Article (CrossRef Link)

[28] Lin, X., Ren, T., Yang, J. and Wang, X., “Multi-objective cellular memetic algorithm,”
International Journal of Computing Science and Mathematics, 15(3), 213-223, 2022.
Article (CrossRef Link)

[29] Gu, F., Liu, H. and Liu, H., “A coevolutionary algorithm for many-objective optimization
problems with independent and harmonious objectives,” Complex System Modeling and
Simulation, 3(1), 59-70, 2023. Article (CrossRef Link)

[30] Deb, K. and Jain, H., “An evolutionary many-objective optimization algorithm using reference-
point-based nondominated sorting approach, part I: solving problems with box constraints,” IEEE
Transactions on Evolutionary Computation, 18(4), 577-601, 2014. Article (CrossRef Link)

[31] Chen, H., Tian, Y., Pedrycz, W., Wu, G., Wang, R. and Wang, L., “Hyperplane assisted
evolutionary algorithm for many-objective optimization problems,” IEEE Transactions on
Cybernetics, 50(7), 3367-3380, 2020. Article (CrossRef Link)

[32] Cheng, J., Yen, G. G. and Zhang, G., “A many-objective evolutionary algorithm with enhanced
mating and environmental selections,” IEEE Transactions on Evolutionary Computation, 19(4),
592-605, 2015. Article (CrossRef Link)

[33] Jiang, S. and Yang, S., “A strength Pareto evolutionary algorithm based on reference direction for
multiobjective and many-objective optimization,” IEEE Transactions on Evolutionary
Computation, 21(3), 329-346, 2017. Article (CrossRef Link)

[34] Zhang, X., Tian, Y. and Jin, Y., “A knee point-driven evolutionary algorithm for many-objective
optimization,” IEEE Transactions on Evolutionary Computation, 19(6), 761-776, 2015.
Article (CrossRef Link)

https://doi.org/10.1109/TVT.2022.3196544
https://doi.org/10.1109/TCC.2020.3037306
https://doi.org/10.1109/JIOT.2022.3233667
https://doi.org/10.1109/JIOT.2022.3150976
https://doi.org/10.1109/TWC.2019.2943563
https://doi.org/10.1504/ijbic.2022.10044862
https://doi.org/10.1504/ijbic.2022.128089
https://doi.org/10.1504/IJBIC.2022.127511
https://doi.org/10.1504/ijcsm.2023.10055625
https://doi.org/10.1504/ijcsm.2023.134563
https://doi.org/10.1504/ijcsm.2022.124723
https://doi.org/10.23919/CSMS.2022.0024
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/TCYB.2019.2899225
https://doi.org/10.1109/TEVC.2015.2424921
https://doi.org/10.1109/TEVC.2016.2592479
https://doi.org/10.1109/TEVC.2014.2378512

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 5, May 2024 1259

Xiangyu Shi is currently working toward M.S. degree at computer science and technology,
Taiyuan University of Science and Technology, Taiyuan, China. His research interests
include computational intelligence and edge computing.

Zhixia Zhang received the Ph.D. degree from Taiyuan University of Science and
Technology, Taiyuan, China, in July 2023. Her research interests include computational
intelligence, network security, and machine learning.

Zhihua Cui received the Ph.D. degree from Xi’an Jiaotong University, Xi’an, China, in
2008. He is a Professor with Taiyuan University of Science and Technology, Taiyuan, China.
His research interests include evolutionary optimization, big data modeling, and networking
security.

Xingjuan Cai received the Ph.D. degree in control theory and engineering from Tongji
University, Shanghai, China, in 2017. She is a Professor with the School of Computer Science
and Technology, Taiyuan University of Science and Technology, Taiyuan, China. Her
interesting includes cloud computing, bio-inspired computation and applications.

