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Abstract 

 
Previous studies on joint optimization of computation offloading and service caching policies 
in Mobile Edge Computing (MEC) have often neglected the impact of dependency-aware 
subtasks, edge server resource constraints, and multiple users on policy formulation. To 
remedy this deficiency, this paper proposes a many-objective joint optimization dependency-
aware task offloading and service caching model (MaJDTOSC). MaJDTOSC considers the 
impact of dependencies between subtasks on the joint optimization problem of task offloading 
and service caching in multi-user, resource-constrained MEC scenarios, and takes the task 
completion time, energy consumption, subtask hit rate, load variability, and storage resource 
utilization as optimization objectives. Meanwhile, in order to better solve MaJDTOSC, a 
many-objective evolutionary algorithm TSMSNSGAIII based on a three-stage mating 
selection strategy is proposed. Simulation results show that TSMSNSGAIII exhibits an 
excellent and stable performance in solving MaJDTOSC with different number of users setting 
and can converge faster. Therefore, it is believed that TSMSNSGAIII can provide appropriate 
sub-task offloading and service caching strategies in multi-user and resource-constrained MEC 
scenarios, which can greatly improve the system offloading efficiency and enhance the user 
experience. 
 
 
Keywords: Mobile Edge Computing (MEC), Dependency Aware Task Offloading Service 
Caching, Multi-user, Resource Constraint, Many-objective Evolutionary Algorithm. 
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1. Introduction 

Applications that are more sensitive to latency and resource needs are currently proliferating 
in fields including data stream processing, face recognition, and virtual/augmented reality, 
because mobile devices and the Internet of Things are so widely used [1]. But as of right now, 
cloud computing platforms or mobile devices are mostly used to process and execute these 
apps. It cannot be ignored that, on the one hand, many applications require computing 
resources that are not met on mobile devices. On the other hand, deploying resource-intensive 
applications on cloud platforms often requires large amounts on data to be transferred to and 
from mobile devices to remote servers in the cloud, leading to unpredictable communication 
latency problems [2]. It is with these considerations in mind that MEC was born [3] and has 
emerged as a much-anticipated solution to remedy many of the shortcomings brought about 
by the aforementioned problems. Meanwhile, the application of multi-objective evolutionary 
algorithms in various fields [4-10] also provides new ideas to solve the problems in MEC. 

In practical applications, MEC still has a lot of obstacles to overcome. Based on 4 million 
apps, Alibaba’s statistics indicates that over 75% of applications (tasks) are made up of 
dependent subtasks. Nevertheless, contemporary mobile apps frequently have several 
interdependent subtasks. These dependence subtasks must be carried out in a certain order and 
must be supported by particular services [11]. For example, the user must first input image 
loading in a face recognition application; before face detection and feature extraction, the 
image usually needs to be preprocessed; once the image loading and preprocessing are 
completed, the next step is to detect the face in the image; after the face has been acquired 
After obtaining the face’s feature representation, it can be recognized or its identity verified 
by comparing it to the known features stored in the database. The following factors must be 
carefully considered when offloading these dependency-aware subtasks to edge nodes: 

•Dependency perception between subtasks: the execution order of subtasks is constrained 
by the dependencies between them. A subtask can only start processing if it receives the output 
from all predecessor subtasks, and it needs to forward the obtained results to the successor 
subtasks for subsequent processing. For example, in the face recognition application described 
above, "Face Detection" subtasks’ outputs are inputs to "Face Alignment" subtasks. Therefore, 
the "Face alignment" subtask can only begin when the "Face detection" subtask is finished. 

•Dependency-aware correlation between subtask offloading and service caching: 
subtask execution depends on the support from the corresponding service, this means that the 
corresponding services supporting subtask processing must be cached on edge servers where 
subtasks are offloaded to. For example, the "positioning" sub-task of a map navigation task 
should be offloaded to edge server which already caches GPS and BeiDou satellite services. 

•Multi-user, resource-constrained scenarios pose challenges for dependency-aware 
subtask offloading: a task is usually partitioned into multiple dependency subtasks for 
offloading, the number of dependency subtasks to be offloaded (decision-variable dimensions) 
will explode with the growth in the number of users, and edge servers typically with finite 
compute and store resources. Therefore, how to assign these huge number of dependent 
subtasks to appropriate edge servers (resource constrained) will greatly affect the offloading 
efficiency in edge computing environments. 

The dependency-aware subtask offloading and service caching strategies formulated after 
comprehensive consideration of the above factors will be more applicable to realistic MEC 
scenarios. It will greatly improve the subtask hit service rate and greatly improve the offloading 
efficiency of the MEC system. It can also fully utilize the computing and storage resources of edge 
servers in the MEC system to avoid the waste of resources. The main thing is that it improves the 
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user experience and can provide users with low latency and low energy consumption. 
The primary contributions of this paper can be summed up as follows: 
1) To solve the joint optimization problem of dependency-aware subtask offloading and 

service caching under multi-user, resource-constrained MEC environments, a many-
objective model for joint optimization of dependency-aware task offloading and service 
caching (MaJDTOSC) is constructed, taking into account the dependency-awareness of 
subtasks, the correlation between dependency-aware subtask offloading and service 
caching, as well as the existence of the challenges of such environments. 

2) In order to develop efficient, suitable and adaptable dependency subtask offloading, 
service caching strategies for multi-user, resource constrained edge computing 
environments. Five optimization objectives are set in MaJDTOSC: task completion time, 
task processing energy consumption, subtask hit rate, load variability, and storage 
resource utilization. Inter-subtask dependencies and resource-constrained edge servers 
are also considered as their constraints. 

3) Because the constructed MaJDTOSC belongs to many-objective optimization problem 
and "dimension explosion" of decision variables occurs when the task is partitioned into 
a series of perceptually dependent subtasks. A based on Three-Stages Mating Selection 
(TSMS) strategy’s many-objective evolutionary algorithm TSMSNSGAIII is presented 
to better solve MaJDTOSC to obtain a suitable and efficient dependency subtask 
offloading and service caching decision. 

2. Related Works 
Due to its urgency and criticality, task offloading has steadily emerged as one of the main 
research topics in the framework of MEC in recent years. Tang et al. [12] investigated the 
problem of non-separable and latency-sensitive task offloading in dynamic edge-loaded 
environments. They proposed a distributed algorithm based on model-free deep reinforcement 
learning to solve the problem, aiming at minimizing the long-term cost. Zhou et al. [13] 
investigated joint optimization issues for resource allocation and computational offloading for 
dynamic multiuser MEC systems. Their objective was to minimize the energy consumption of 
the entire MEC system. A reinforcement learning approach based on value iteration was 
proposed to determine the resource allocation and computational offloading strategies. Xu et 
al. [14] investigated how to minimize the task processing latency for Internet of Vehicles (IoV) 
users in the presence of limited edge server resources. And they designed a fuzzy task 
offloading and resource allocation scheme: using game theory to determine the optimal task 
offloading strategy for IoV users, and using Q-learning to determine the resource allocation 
strategy. Nguyen et al. [15] proposed a new collaborative block mining and task offloading 
scheme for blockchain based MEC systems. In order to solve the latency issue created by 
blockchain operations in MEC, a consensus mechanism was developed to maximize the utility 
of the system. Yang et al. [16] studied a MEC system made up of mobile devices supporting 
various radio access technologies and heterogeneous edge servers. They constructed the 
process of determining the optimal offloading location as a Markov Decision Process (MDP) 
which is solved using the Value Iteration Algorithm (VIA). 

All of the above work focuses on how tasks are completely offloaded. Mobile applications 
may have numerous interdependent tasks as modern MEC applications become more 
complicated. Offloading dependent tasks is therefore required in many real-world MEC 
applications. Zhao et al. [17] studied ways to offload dependency tasks to edge nodes with 
service caches and designed a convex planning based algorithm to solve the problem. They 
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also studied a special case of the problem and presented an approximation algorithm with 
bounded approximation factors to solve this case. Shen et al. [18] investigated the service 
caching and dependency-aware task offloading problem of VEC. Their aim was to maximize 
the offloading efficiency. To address the problem, they developed a semi-distributed algorithm 
based on dynamic planning. A dependency-aware offloading approach based on edge cloud 
collaboration was developed by Chen et al. [19]. They separated the offloading problem into 
two subproblems: minimizing the application completion time in two different collaboration 
models. The two subproblems were solved, respectively, by a greedy algorithm and an 
efficient greedy method. The dependency task offloading problem was examined by Nguyen 
et al. [20] in a cooperative UAV-assisted MEC scenario, and divides the problem into two 
subproblems: communication resource allocation and offloading decision. A suboptimal 
solution to the former problem is found using a meta-heuristic, meanwhile convex 
optimization is used to address the second problem. An et al. [21] jointly optimized the 
dependency task offloading strategy and the allocation strategy of communication and 
computation resources under fast fading and slow fading channels. The aim is to minimize the 
energy consumption of each IoT device. Yan et al. [22] explored methods to acquire the best 
dependency task offloading and resource allocation policies. Their objective was to reduce the 
weighted sum of user’s task execution time and energy consumption in two-user MEC 
networks.  

Actually, the influence of service caching on task offloading efficiency should be taken into 
account in addition to dependent task offloading. For example, in Fig. 1, assume that four 
dependency-aware subtasks need to be offloaded in a certain edge computing scenario. Among 
them, subtask 3 depends on subtask 2 and subtask 4 depends on subtask 1. In the left figure, 
assuming that all types of services are stored on all edge servers without considering the 
service caching status, the optimization yields an offloading policy where subtasks 1 and 4 are 
offloaded to edge server 1, and subtasks 2 and 3 are offloaded to edge server 2. While in the 
right figure the actual edge caching situation is considered: services of types 2 and 4 are cached 
on edge server 1, services of types 1 and 3 are cached on edge server 2 (i.e., there is only a 
limited number of types of services that each edge server can cache.), and the optimization 
yields an offloading policy as follows: subtasks 2 and sub-subtasks 4 are offloaded to edge 
server 1, subtasks 1 and sub-subtasks 3 are offloaded to edge server 2. It is obvious that the 
dependencies between subtasks and the service caching policy simultaneously affect the 
development of offloading policies for dependent subtasks. Moreover, single-objective 
optimization is often performed in previous work. In real world scenarios, the optimization 
factors considered by users are often comprehensive and complex. Thus, in MEC scenarios, 
this paper focuses on building a many-objective joint optimization dependency-aware task 
offloading and service caching model and suggests an appropriate way to obtain subtask 
offloading and service caching policies that greatly increase the offloading efficiency. 

3. Proposed MaJDTOSC 

3.1 Task Model 
Each user has a task (consisting of multiple dependent subtasks) to process, a directed acyclic 
graph ( , )n n nG V E=  can be used to represent each user task nT , where 1={ }n n,start n, n,exitV T ,T ,...,T  
stands for the set of subtasks in task nT  and , , ,{ , ,..., }start i start j k exit

n n n nE R R R=  stands for the set of 
subtask dependencies in task nT  , where , , [1, 1]  i j k exit and i j k∈ − ≠ ≠  . Fig. 2 illustrates the 
dependency graph between subtasks in a task, where purple, green, red and blue lines represent 
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four different types of subtasks that require support from the corresponding services in order 
to be processed. ,n startT   and ,n exitT   represent the start subtask and exit subtask (indicated by 
black lines) of task nT . Presume that Start Subtasks and Exit Subtasks can only be processed 
locally because they typically require local data collection and local display of processing 
results, respectively. ,n iT  stands for the 𝑖𝑖𝑖𝑖ℎ intermediate subtask of task nT . In Fig. 2, we call 
subtask ,2nT   is the predecessor subtask of subtask ,4nT  , and subtask ,4nT   is the successor 
subtask of subtask ,2nT . 

, ,n i n jT TD  represents the data forwarded by Subtask ,n iT  to Subtask ,n jT . 
The same implies that the input data of Subtask ,n jT  is dependent on the output data of Subtask 

,n iT . The dependency between them is denoted as ,i j
nR . Therefore, Subtask ,n jT  cannot start its 

execution without Subtask ,n iT s′  completion. 

 
Fig. 1. Research motivation figure. 

3.2 System Model 
As indicated in Fig. 3, in this paper, the system model considers a three-layer MEC 
architecture: 1) Cloud layer, 2) Edge layer, and 3) Device layer. The cloud layer is located at 
the topmost layer in the three-tier architecture and consists of cloud servers, which have 
unlimited computational and storage resources in which all types of services required by the 
user are cached, and it is responsible for distributing the services to the various edge servers 
based on the service caching policy. The edge layer belongs to the core layer in the three-tier 
architecture, which mainly consists of multiple edge servers and base stations, each edge 
server has only limited computing and storage resources, the edge servers communicate with 
the users wirelessly through the base station, and the users can offload their tasks to the edge 
servers for processing. The edge servers communicate with each other through wired means 
and they can collaborate with each other to process tasks. The device layer, also known as the 
user layer, consists of multiple users and is located at the lowest level of the three-tier 
architecture. Different users have different tasks to be processed, and a task in turn consists of 
multiple dependent subtasks, and different types of subtasks require the support of 
corresponding services to be processed, and the dependencies between subtasks need to be 
considered. Users offload these dependency-aware subtasks to the target edge server according 
to the subtask offload policy. 
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3.3 Data Rate Model 

              
Fig. 2. Subtask dependency graph.                                         Fig. 3. System model. 
 

Three types of data rates are included in MaJDTOSC: 1) The data transfer rate when a user 
uploads a subtask. 2) The data propagation rate of the subtask between edge servers. 3) The 
data forwarding rate of the predecessor subtask. The data transfer rate between user n  and 
edge server k  when offloading the ith  subtask and the data propagation rate of the subtask 
between edge server k ′  and edge server k  are defined as: 
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where ,
k
n iB  represents the channel bandwidth when user n  uploads the ith  subtask to edge 

server k . ,
k
n ip  represents the transmission power when user n  uploads the ith  subtask to the 

edge server k , and ,
k
n ih  represents the channel gain between user n  and the edge server k  

when offloading the ith  subtask. 2δ  represents the additive Gaussian white noise power. ,
k k
n iB ′  

represents the channel bandwidth when the edge server k ′  propagates user n s′  ith  subtask to 
the edge server k . ,

k k
n ip ′  stands for the propagation power of the edge server k ′  to propagate 

the ith  subtask of user n  to the edge server k , and ,
k k
n ih ′  stands for the channel gain of the edge 

server k ′  when it propagates the ith  subtask of user n  to the edge server k . k k′Λ  represents 
the noise power between edge server k ′  and edge server k . 

The data forwarding rate of the predecessor subtask i′  of the ith  subtask of user n  is 
defined as: 
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where ( , )off n i  represents the offloading location of the ith  subtask of user n . 
( , ) 0 ||  ( , ) 0off n i off n i′ = =  represents the case where at least one of the ith  subtask of user n  

and its predecessor subtask i′  is processed locally, denoted as case one. 
( , )  &  ( , )off n i k off n i k′ ′= =  stands for the case where the ith  subtask of user n  and its 

predecessor subtask i′  are processed on different edge servers, denoted as case two. ,n i iB ′  
represents the channel bandwidth when the predecessor subtask i′  of the ith  subtask of user 
n  forwards data to subtask i  in case one, ,n i ip ′  represents the forwarding power when the 
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predecessor subtask i′  of the ith  subtask of user n  forwards data to subtask i  in case one, 
and ,n i ih ′  represents the channel gain when the predecessor subtask i′  of the ith  subtask of user 
n  forwards data to subtask i  in case one. ,

k k
n i iB ′

′  represents the channel bandwidth when the 
predecessor subtask i′  of the ith  subtask of user n  forwards data to subtask i  in case two, 

,
k k
n i ip ′

′  represents the forwarding power when the predecessor subtask i′  of the ith  subtask of 
user n  forwards data to subtask i  in case two, and ,

k k
n i ih ′

′  represents the channel gain when the 
predecessor subtask i′  of the ith  subtask of user n  forwards data to subtask i  in case two. 

3.4 Objective Model 

3.4.1 Task Completion Time Objective 
Task completion time is defined as the time taken from the start subtask execution to complete 
the last subtask. The ith  subtask of user n s′  actual completion time is as follows: 
 ,( , , ) ( , , ) ,   { {0}}k

A A n iSTFT n i k STST n i k ET k K= + ∀ ∈   (4) 
where ,

k
n iET  represents the time consumed by the ith  subtask of user n  to offload to the 

edge server k  (or local device) to perform the task. ( , , )ASTST n i k  represents the time when the 
ith  subtask of user n  is offloaded to the edge server k  (or local device) to actually start 
execution. Obviously a subtask cannot start execution without the output of its predecessor 
subtasks, and it must also be checked if the edge server (or local device) is currently idle. This 
leads to the definition of ( , , )ASTST n i k : 
 ( , , ) max{ { , , }, ( , , )}A TSTST n i k avail n i k STST n i k=  (5) 

where ( , , )TSTST n i k  represents the time when the ith  subtask of user n  is offloaded to edge 
server k  (or local device) to theoretically start execution, i.e., the moment when edge server 
k  (or local device) has received and generated all of the input data required for the ith  subtask. 

{ , , }avail n i k  indicates the moment when the local device or edge server is prepared to carry 
out the task, i.e., the time when the edge server k  and the local device are idle. In this paper, 
we assume all edge servers as well as user devices are equipped with multi-core processors 
that can handle multiple subtasks simultaneously, hence { , , } 0avail n i k = . ( , , )TSTST n i k  is 
defined recursively: 
 ,( , )

( , , ) max ( ( , ) )T A n i ii p n i
STST n i k STFT n i DFT ′′∈

′= +  (6) 

where ( , )p n i  represents the set of direct predecessor subtasks of the ith  subtask of user n . 
,n i iDFT ′  represents the data forwarding time of the output of the predecessor subtask i′  in user 

n  to the edge server (or local device) where subtask i  is offloaded. It is defined as: 

 ,
,

,

n i i
n i i

n i i

d
DFT

R
′

′
′

=  (7) 

where ,n i id ′  represents the amount of data forwarded to subtask i  by subtask i′ , the 
predecessor of user n s′  ith  subtask, and ,n i iR ′  represents the data forwarding rate. If 

( , ) ( , )off n i off n i k′ = =  represents that user n s′  subtask i  performs tasks on the same edge 
server as its predecessor subtask i′ , no data forwarding time is incurred, i.e., , 0n i iDFT ′ = . 
Obviously, ( , , )ASTFT n exit k  stands for the actual completion time of the exit subtask of user 
n , and ( , , )ASTST n start k  stands for the actual start of the execution time of the start subtask of 
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user n . Therefore, the task processing time of user n  is ( , , ) ( , , )A ASTFT n exit k STST n start k− . 
This paper defines task completion time objective as the sum of all user task completion 

times: 

 
1
[ ( , , ) ( , , )]

N

A A
n

TCT STFT n exit k STST n start k
=

= −∑  (8) 

3.4.2 Energy Consumption Objective 
There are four main components to the energy consumption generated by mobile users: 
computational energy consumption, transmission energy consumption, propagation energy 
consumption, and forwarding energy consumption. Subtasks only generate computational 
energy consumption when they are processed locally. If offloaded to an edge server, there are 
transmission energy consumptions when uploading subtasks. Propagation energy consumption 
is generated when subtasks are propagated between edge servers. Forwarding energy 
consumption is incurred during forwarding of the predecessor subtask to the subtask. The 
computational energy consumption of the ith  subtask of user n  is defined as: 
 2

, , ,
c
n i n i n iEC f dκ= ⋅ ⋅  (9) 

where κ  stands for power efficiency, depending on chip architecture. ,n if  represents the 
CPU frequency for processing the ith  subtask of user n . ,n id  represents the amount of data to 
be processed for the ith  subtask of user n . 
    The transmission energy consumed by user n  when offloading the ith  subtask, the 
propagation energy consumption of the subtask between edge servers, and the forwarding 
energy consumption of the predecessor subtask are defined as: 

 ,
, ,

,

n it t
n i n i k

n i

d
EC P

R
= ⋅  (10) 

 ,
, ,

,

n is s
n i n i k k

n i

d
EC P

R ′= ⋅  (11) 

 ,
, ,

,

n i if f
n i i n i i

n i i

d
EC P

R
′

′ ′
′

= ⋅  (12) 

where ,
t
n iEC  represents the transmission energy consumption of the ith  subtask of user n , 

,
s
n iEC  stands for the propagation energy consumption of the ith  subtask of user n , and ,

f
n i iEC ′  

stands for the forwarding energy consumption of the predecessor subtasks of the ith  subtask 
of user n . ,

t
n iP , ,

s
n iP , and ,

f
n iP  represent transmission, propagation, and forwarding power, 

respectively. Use , 1,1 1,2 , 1 ,{ , ,..., , }n i N exit N exitx x x xχ −=  to indicate the offloading decision for 
subtasks in each task, if , 1n ix =  means the subtask will be offloaded to the edge server for 
processing, otherwise , 0n ix =  means the subtask is processed locally. Use 

, 1,1 1,2 , 1 ,{ , ,..., , }n i N exit N exity y y yγ −=  to indicate whether the corresponding service is cached on the 
edge server where the subtask is offloaded. If , 1n iy =  represents that the corresponding service 
is cached, , 0n iy =  represents that the corresponding service is not cached. Therefore, the 
energy consumption objective is defined as: 

 , , , , , , ,
1 1

[ ( ) (1 ) ( )]
exitN

t s f c f c
n i n i n i n i i i n i n i i i n i

n i
EC x y EC EC EC EC x EC EC′ ′

= =

= ⋅ ⋅ + + + + − ⋅ +∑∑  (13) 
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where N  represents the number of users (and also the number of tasks) and exit  
represents the number of subtasks contained in the task. 

3.4.3 Subtask Hit Rate Objective 
The subtask hit rate objective is the number of subtasks successfully offloaded (i.e., subtasks 
offloaded with corresponding services cached on the edge server) as a percentage of the 
number of subtasks offloaded. ,

score
n iH  represents the hit score situation of the ith  subtask of 

user n . If the subtask directly hits a service on the associated server score 1, i.e., , 1score
n iH = ; if 

the subtask hits a service on the Collaboration Edge Server score 0.5, i.e., , 0.5score
n iH = ; 

otherwise it means that the subtask does not hit the corresponding service and will be processed 
locally, score 0, i.e., , 0score

n iH = . Therefore, the subtask hit rate objective is defined as: 

 
, , ,

1 1

,
1 1

( )
100%

exitN
score

n i n i n i
n i

exitN

n i
n i

x y H
STHR

x

= =

= =

⋅ ⋅
= ×
∑∑

∑∑
 (14) 

where ,n ix  is used to determine whether the ith  subtask of user n  is offloaded or not, and 

,n iy represents the service cache on the target edge server where the ith  subtask of user n  is 
offloaded. 

3.4.4 Load Variability Objective 
Load variability can be measured by the standard deviation of the server load. A larger 
standard deviation value indicates a higher volatility of the load, i.e., the load is more variable. 
A smaller standard deviation value indicates a less volatile load, i.e., less load variability. Less 
load variability represents that all ESs in the MEC scenario fully utilize their computational 
resources and avoid wastage of computational resources. By calculating load standard 
deviation, the load variability can be quantified and used for the calculation of the load 
variability objective. The formula for calculating load variability is defined as: 
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where K  stands for the number of edge servers. kLoad  stands for the load of the edge 
server k . AvgLoad  stands for the average load of the edge server. 

3.4.5 Storage Resource Utilization Objective 
Setting storage resource utilization as an optimization goal can provide multiple benefits, 
including increased resource utilization efficiency, reduced energy consumption, improved 
user experience, and support for large-scale deployments. This enhances overall system 
performance and effectiveness by optimizing resource management and quality of service in 
MEC environments. Its formula is defined as: 
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where l
ky  represents whether edge server k  caches a service of type l  or not. lSDV  

represents the storage space occupied by the l type−  services. kESCC  represents edge server 
k s′  storage capacity. 

In summary, the constructed MaJDTOSC is: 
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From formula 17, the decision variables for MaJDTOSC are composed of 
1,1 1,2 ,{ , ,..., }k k k

n ix x x x=   and 1 2y {y , ,..., }l l l
ky y=  , and x  and y   represent the task offloading and 

service caching policies, respectively. MaJDTOSC  needs to minimize objectives TFT  and 
EC  and maximize objectives STHR , varL  and SRU . Its constraints are described on the right-
hand side of formula 17. where the first line ,

k
n ix  represents whether the ith  subtask of user n  

is offloaded to edge server k  , with 1 meaning it has been offloaded and 0 meaning it is 
processed locally. The second line represents whether the l type−  service is cached on the kth
edge server, where 1 means it is cached and 0 means it is not cached. kO  represents the amount 
of data offloaded to edge server k , and kESOC  represents the offload capacity of edge server 
k  , therefore, the third line constraint states that no edge server’s offload capacity can be 
exceeded by the volume of data offloaded. kSC  represents the amount of storage resources 
consumed by the caching service of edge server k , and kESCC  stands for the cache capacity 
of edge server k , therefore, the constraint in the fourth line implies that the quantity of data 
stored in each edge server cannot exceed their cache capacity. In the fifth constraint line, the 
set of subtask i s′  previous subtasks is denoted by ( )p i . ()finish  is used to determine whether 
the predecessor subtasks have all completed their outputs, and ()avail  is used to determine 
whether the edge server (or local device) is ready. Subtask i  can be executed only if both 
conditions are satisfied. 

4. Proposed TSMSNSGAIII 

4.1 TSMSNSGAIII Framework 
Researchers have thoroughly studied multi-objective evolutionary algorithms and designed 
various optimization ideas [23-29]. In order to better solve MaJDTOSC in light of the 
challenges that it faces, a many-objective evolutionary algorithm called TSMSNSGAIII based 
on the Three-Stages Mating Selection (TSMS) strategy is presented in this study. 
TSMSNSGAIII changes the mating selection strategy of NSGAIII and retains its 
environmental selection strategy. In TSMSNSGAIII, the mating selection process is split into 
three stages to balance convergence and diversity in the evolutionary process, focusing on 
convergence, convergence & diversity, and diversity, respectively. The three-phase division 
rule is defined as: 
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where r  is a parameter controlling the proportion of each stage, and r  should be less than 
0.5; in this paper, r  is set to 0.2. 

Algorithm 1 shows the framework of TSMSNSGAIII. As shown in Algorithm 1, 
TSMSNSGAIII requires inputs of population size, number of optimization objectives, 
maximum number of iterations, stage division ratio, cross-variance probability, and cross-
variance distribution index, and finally outputs the population obtained after optimization is 
completed. Each individual in the population represents one of the given dependency subtask 
offloading, service caching policies. TSMSNSGAIII is initialized by randomly generating an 
initial population of size and a set of uniformly distributed reference points (lines 1∼2), and 
then obtaining the ideal points of the initialized population (line 3). In the evolutionary process, 
a three-stage mating selection strategy was first used to select the best individuals to join the 
mating pool to generate the offspring population after cross mutation (lines 5∼12). After 
generating the offspring population, combine it with the current population and update the 
ideal point information (line 13), and then use the environment selection strategy of NSGAIII 
to select the combined population to generate the next generation population (line 14). The 
optimized population will be returned as soon as the maximum number of evaluations of the 
function has been reached.  

 
Algorithm 1 Framework of TSMSNSGAIII 
Input: Population size: N , Number of objective: M , Maximum number of function evaluations:

maxt , Stage division ratio: r , Crossover probability: cp , Mutation probability: mp , Crossover 
distribution index cλ , Mutation distribution index mλ . 
Output: Final population: maxtP . 
1: Initialize the Population: { }0 1 2, ,..., NP P P P← ; 
2: ( , )Z Uniformpoint N M← ; 
3: *

0_ ( )Z min obj P← ; 
4: while maxt t<  do 
5: if maxt r t≤ ⋅  then 
6:       *1_ ( , , )t tP Phase MatingSelection N P Z′ ← ; (Reference algorithm 2) 
7:     elseif (1 )max maxr t t r t⋅ < ≤ − ⋅  then 
8:       *2 _ ( , , , , )t t maxP Phase MatingSelection N P Z t t′ ← ; (Reference algorithm 3) 
9:     else 
10:       3_ ( , )t tP Phase MatingSelection N P′ ← ; (Reference algorithm 4) 
11:     endif 
12: & ( , , , , )t t c m c mQ crossover mutation P p p λ λ′← ; 
13: * _ _ ( )t tZ Update min obj P Q← ∪ ; 
14:     *

1 ( , , , )_ t tt nvironmentSelection PP NSGAII E Q NI Z Z+ ∪← ; 
15: endwhile 

4.2 Three-Stage Mating Selection Strategy 

4.2.1 First Phase 
The algorithm needs to obtain better subtask offloading and service caching strategies as soon 
as possible when it first starts solving MaJDTOSC, and the algorithm needs better convergence 
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performance. Therefore, algorithms in the mating selection of a stage ( maxt r t≤ ⋅ ) is mainly 
concerned with the performance of individual convergence performance, how to carry out the 
judgment of convergence performance is a problem worth thinking about. This paper evaluates 
the individual convergence performance using the Achievement Scalar Function (ASF) and 
the Pareto dominance (PD) relationship. Pareto dominance relationship means that all the 
objective values of one individual 1p  are less than or equal to all the objective values of 
another individual 2p  and there is a less-than relationship on at least one objective value, if 
this condition is satisfied, we say that the individual 1p  dominates the individual 2p  , denoted 
as 1 2p p  . The ASF belongs to the convergence discriminant, which guarantees the 
convergence performance of an individual. Calculating an individual 1p s′  ASF value is 
defined as follows: 
 { }1 1*

1 1:
( ) ( ) /p p

i i ii M
ASF p max f z λ

=
= −  (19) 
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where *
iz  represents the best value of objective i  found among all individuals so far, 1p

if  
represents the ith  objective value of individual 1p  , and 1p

iλ  represents the weight vector of 
an individual 1p  on the ith  objective, which is set to 610−  if 1p

iλ  equals to zero. The process 
of calculating the ASF value of an individual 1p  is as follows: first, the objective value is 
transformed based on the ideal point information, then divided by the weight vector for 
normalization, and finally the maximum value of it is taken. The ASF value reflects each 
individual’s level of convergence. The smaller the ASF value of individual 1p , the better the 
convergence performance. ASF values were used to the first and second stages of the mating 
selection process. 

Algorithm 2 shows the flow of mating selection one phase. As shown in Algorithm 2, the 
mating Selection phase 1 requires inputs of population size, current population, and ideal 
points, and finally outputs the parent population consisting of the individuals selected into the 
mating pool. First, an empty set is created for storing the parent population (line 1), and then 
the ASF values of all individuals in the current population are calculated according to formula 
19 (lines 2∼4). Randomly select two individuals 1p , 2p  from the current population , and 
check the dominance relationship between them. If individual 1p  dominates individual 2p  , 
then individual 1p  is added to the mating pool, and if individual 1p  is dominated by individual 

2p  , then individual 2p  is added to the mating pool. If the individuals do not dominate each 
other, compare their ASF values and select the individual with the smaller ASF value to join 
the mating pool. If two individuals have the same ASF value, one of these two individuals is 
randomly selected to join the mating pool (lines 6∼19). Until the number of individuals in the 
mating pool exceeds the size of the population, this mating selection process is stopped. 

 
Algorithm 2 Phase 1 of MatingSelection 
Input: Population size: N , Current population: tP , Ideal point: *Z . 
Output: Mating pool: tP′ . 
1: tP′ ←∅ ; 
2: while i N≤  do 
3: ( )ASF i ← Calculate the ASF value for each individual according to formula 19; 
4: endwhile 
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5: while tP N′ ≤  do 
6: Two individuals 1p and 2p are randomly selected from tP ; 
7:    if 1 2p p  then 
8:     1{ }t tP P p′ ′← ∪ ; 
9:   elseif 1 2p p  then 
10:     2{ }t tP P p′ ′← ∪ ; 
11:   else 
12: if 1 2( ) ( )ASF p ASF p<  then 
13: 1{ }t tP P p′ ′← ∪ ; 
14: elseif 1 2( ) ( )ASF p ASF p>  then 
15: 2{ }t tP P p′ ′← ∪ ; 
16:       else 
17:           1 2{ ( , )}t tP P random p p′ ′← ∪ ; 
18:       endif 
19: endif 
20: endwhile 
21: return tP′ ; 

4.2.2 Second Phase 
The algorithms need to formulate sub-task offloading and service caching strategies that are 
both appropriate and diverse in solving the MaJDTOSC mid-term, requiring both good 
convergence and diversity of the algorithms. Therefore, the algorithm focuses on the overall 
performance of individual convergence and diversity in the second stage of mating selection 
( (1 )max maxr t t r t⋅ < ≤ − ⋅  ). The ASF, minimum clip angle, and Adaptive Comprehensive 
Performance Score (ACPS) are used to judge individual convergence and diversity in this 
stage. The calculation of the ASF has been given in the previous subsection. The formula for 
calculating the minimum angle between an individual 𝑝𝑝1 and other individuals ( 2 2 1,p P p p∈ ≠ ) 
in the population is defined as: 
 2

1 1
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where P  represents the current population, 2p  represents other individuals in population P , 
and 2

1

p
pθ  represents the angle between individual 1p  and individual 2p . M  represents the 

number of objectives, 1p
if  stands for the objective value of individual 1p  on objective i , and 

*
iz  represents the ideal objective value on the ith  objective. If the 

1

min
p valueθ −  of individual 1p  

is large, it represents a better diversity of individual 1p . In this paper, an adaptive composite 
performance scoring index is proposed for further judging individual performance, which is 
defined as: 
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where t  is the current number of objective function evaluations and maxt  is the maximum 
number of objective function evaluations. As the number of evaluations rises, ACPS 
progressively modifies the weights given to convergence and diversity. A larger ACPS 
represents a better overall performance of an individual under the current evolutionary stage. 

The flow of the mating selection phase 2 is given in Algorithm 3. As shown in Algorithm 
3, the mating Selection phase 2 requires inputs of population size, current population, ideal 
point, current number of function evaluations, and maximum number of function evaluations, 
and finally outputs the parent population consisting of the individuals selected into the mating 
pool. First, an empty set is created to store the parent population (line 1), and then calculate 
the ASF value, the minimum pinch angle, and the ACPS value for all individuals in the current 
population according to formula 19, formula 21, and formula 23 (lines 2∼6). Randomly select 
two individuals 1p , 2p  from the current population tp , if the ASF value of an individual 1p  
is smaller than the ASF value of an individual 2p  and the minimum clip angle of an individual 

1p  is larger than the minimum clip angle of an individual 2p , then add the individual 1p  to 
the mating pool. If the ASF value of individual 1p  is larger than the ASF value of individual 

2p  and the minimum clip angle of individual 1p  is smaller than the minimum clip angle of 
individual 2p  , then individual 2p  is added to the mating pool. If the above conditions are not 
met, the ACPS values of the two individuals are compared, and the individual whose ACPS 
value is higher is let into the mating pool; otherwise, one of the two individuals is randomly 
selected to be added to the mating pool (lines 8∼20). Until the number of individuals in the 
mating pool exceeds the size of the population, this mating selection process is stopped. 

 
Algorithm 3 Phase 2 of MatingSelection 
Input: Population size: N , Current population: tP , Ideal point: *Z , Current function evaluation times:
t , Maximum number of function evaluations: maxt . 
Output: Mating pool: tP′ . 
1: tP′ ←∅ ; 
2: while i N≤  do 
3: ( )ASF i ← Calculate the ASF value for each individual according to formula 19; 
4: ( )min iθ ← Calculate the minθ  value for each individual according to formula 21; 
5: ( )ACPS i ←Calculate the ACPS value for each individual according to formula 23; 
6: endwhile 
7: while tP N′ ≤  do 
8: Two individuals 1p and 2p are randomly selected from tP ; 
9: if 1 2 1 2( ) ( ) & ( ) ( )min minASF p ASF p p pθ θ< >  then 
10:       1{ }t tP P p′ ′← ∪ ; 
11:     elseif 1 2 1 2( ) ( ) & ( ) ( )min minASF p ASF p p pθ θ> <  then 
12:       2{ }t tP P p′ ′← ∪ ; 
13:     else 
14: if 1 2( ) ( )ACPS p ACPS p>  then 
15: 1{ }t tP P p′ ′← ∪ ; 
16: elseif 1 2( ) ( )ACPS p ACPS p<  then 
17: 2{ }t tP P p′ ′← ∪ ; 
18:         else 
19:             1 2{ ( , )}t tP P random p p′ ′← ∪ ; 
20:         endif 
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21: endif 
22: endwhile 
23: return tP′ ; 

4.2.3 Third Phase 
Algorithms in solving MaJDTOSC late, the formulated sub-task offloading and service 
caching strategies already have good convergence, need to improve the diversity of the 
formulated strategies, that requires the algorithms to have good diversity. Therefore, the 
algorithm focuses on the performance of individual diversity in the phase 3 of mating selection 
( (1 ) max maxr t t t− ⋅ < ≤ ). The minimum clip angle is used in this stage to judge the individual 
diversity. The formula for calculating the minimum clip angle has been given in the previous 
subsection. The flow of the phase 3 of mating selection is given in Algorithm 4. As shown in 
Algorithm 4, the phase 3 of mating selection require the input of the population size, the 
current population, and finally the output of the parent population consisting of the individuals 
selected into the mating pool. First, an empty set is created for storing the parent population 
(line 1), and then the minimum clip angle of all individuals in the current population is 
calculated according to formula 21 (lines 2∼4). Two individuals are randomly selected from 
the current population, and the individual with the larger minimum clip angle is selected to 
join the mating pool. Until the number of individuals in the mating pool exceeds the size of 
the population, this mating selection process is stopped. 
 

Algorithm 4 Phase 3 of MatingSelection 
Input: Population size: N , Current population: tP . 
Output: Mating pool: tP′ . 
1: tP′ ←∅ ; 
2: while i N≤  do 
3: ( )min iθ ← Calculate the minθ  value for each individual according to formula 21; 
4: endwhile 
5: while tP N′ ≤  do 
6: Two individuals 1p and 2p are randomly selected from tP ; 
7: if 1 2( ) ( )min minp pθ θ>  then 
8:       1{ }t tP P p′ ′← ∪ ; 
9: elseif 1 2( ) ( )min minp pθ θ<  then 
10:       2{ }t tP P p′ ′← ∪ ; 
11: else 
12:       1 2{ ( , )}t tP P random p p′ ′← ∪ ; 
13: endif 
14: endwhile 
15: return tP′ ; 

4.2.4 TSMSNSGAIII Time Complexity Analysis 
In the TSMSNSGAIII calculation process, the time complexity of the algorithm mainly comes 
from:1) population initialization; 2) three-stage mating selection process; 3) environment 
selection process. The algorithm starts to execute by first randomly generating N individuals, 
so the time complexity of population initialization is ( )O N . The first stage of mating selection 
requires picking N individuals based on the Pareto dominance relation and ASF values, with 
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time complexity ( )O MN ; the second stage picks based on the ASF values and the minimum 
clip angle, with time complexity 2( )O MN  ; and the third stage picks based on the minimum 
clip angle only, with time complexity 2( )O MN . Therefore, the time complexity of the whole 
mating selection process is 2( )O MN . Since the environment selection is based on the NSGAIII 
algorithm, the time complexity of the environment selection process is ( )O MNH , where H  
represents the number of reference points. In summary, the time complexity of TSMSNSGAIII 
is 2( )O MN . 

5. Experiment 

5.1 TSMSNSGAIII Performance Test 
In this paper, five excellent many-objective evolutionary algorithms were used with 
TSMSNSGAIII on the DTLZ test set using Inverted Generational Distance (IGD) metrics, 
they are NSGAIII [30], hpaEA [31], MaOEADDFC [32], SPEAR [33], KnEA [34]. Table 1 
demonstrates the parameter settings in TSMSNSGAIII, where the first four parameters follow 
the default settings of the NSGAIII algorithm, and the fifth parameter is used to control the 
ratio of the three phases, which is recommended to be set to: 0 0.2r< ≤  if the algorithm is 
required to have a strong comprehensive performance, and 0.2 0.5r< <   if convergence or 
diversity is sought for a single performance. Table 2 demonstrates the test results. It uses "+", 
"-", and "=" to represent that the comparison algorithms outperform, underperform, and equal 
the TSMSNSGAIII performance, respectively, and also makes use of the blue color to 
highlight the best results on the various test problems.  
 

Table 1. TSMSNSGAIII Parameter Settings 
Parameters Description Value 

cp  Probability of simulated binary crossover 1 
cλ  The distribution index of simulated binary crossover 20 
mp  Probability of polynomial mutation 1/ N  
mλ  The distribution index of polynomial mutation 20 

r  Stage division ratio 0.2 
 
As can be seen from Table 2, TSMSNSGAIII shows a definite performance advantage over 

other algorithms for the benchmarking problems DTLZ1, DTLZ3, DTLZ5, DTLZ6 with the 
number of targets set to 5, 7, 9, 11, and 13. 

Slightly worse than KnEA for most target number settings of DTLZ2, DTLZ4, but better 
than KnEA when the target number of DTLZ2 is set to 5. The number of advantages and 
disadvantages is more balanced when comparing with other algorithms. 

On the DTLZ7 there is still a definite performance advantage at all other target number 
settings, except for a slight inferiority to KnEA at target number setting of 9. 

Overall, TSMSNSGAIII achieves excellent performance on the DTLZ test set. 
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Table 2. IGD performance test of TSMSNSGAIII algorithm on DTLZ 
Problem M D NSGAIII hpaEA MaOEADDFC SPEAR KnEA TSMSNSGAIII 

DTLZ1 

5 9 5.0035e-1 (3.06e-1) = 7.1033e-1 (5.08e-1) - 8.1223e-1 (3.87e-1) - 1.2821e+0 (5.33e-1) - 8.3796e-1 (5.81e-1) - 3.8848e-1 (2.54e-1) 
7 11 1.0629e+0 (7.22e-1) - 2.1369e+0 (9.78e-1) - 3.1891e+0 (1.93e+0) - 2.8427e+0 (1.29e+0) - 4.8318e+0 (2.93e+0) - 4.9308e-1 (2.80e-1) 
9 13 1.3658e+0 (6.14e-1) - 2.4477e+0 (9.83e-1) - 8.5617e+0 (6.22e+0) - 2.4563e+0 (1.51e+0) - 8.0522e+0 (8.45e+0) - 5.3335e-1 (2.84e-1) 
11 15 1.5202e+0 (1.03e+0) - 3.2323e+0 (1.57e+0) - 1.7165e+1 (1.15e+1) - 4.1597e+0 (2.45e+0) - 9.0753e+0 (1.27e+1) - 4.8441e-1 (2.20e-1) 
13 17 8.6966e-1 (4.70e-1) = 3.3741e+0 (1.24e+0) - 1.7291e+1 (7.75e+0) - 6.7981e+0 (2.54e+0) - 1.2900e+1 (1.10e+1) - 6.8286e-1 (3.12e-1) 

DTLZ2 

5 14 2.1622e-1 (1.14e-3) = 2.1554e-1 (2.65e-3) = 2.2398e-1 (2.31e-3) - 2.3191e-1 (5.02e-3) - 2.3329e-1 (5.23e-3) - 2.1580e-1 (7.66e-4) 
7 16 3.6128e-1 (3.34e-2) + 3.7946e-1 (1.44e-2) + 3.8967e-1 (1.83e-2) - 3.8631e-1 (7.27e-3) - 3.6981e-1 (1.37e-2) + 3.8364e-1 (7.01e-2) 
9 18 4.8942e-1 (7.96e-2) + 5.0174e-1 (2.67e-2) = 6.1715e-1 (4.94e-2) = 4.4188e-1 (2.17e-2) + 4.9396e-1 (1.56e-2) = 5.5912e-1 (9.35e-2) 
11 20 5.8860e-1 (3.50e-2) + 6.4769e-1 (3.99e-2) = 7.5893e-1 (6.98e-2) - 6.1438e-1 (3.04e-2) + 5.3831e-1 (1.50e-2) + 6.3303e-1 (2.99e-2) 
13 22 6.4542e-1 (3.45e-2) = 7.6038e-1 (3.76e-2) - 8.5505e-1 (7.83e-2) - 7.2117e-1 (4.54e-2) - 5.9542e-1 (3.80e-2) + 6.5899e-1 (2.42e-2) 

DTLZ3 

5 14 2.0587e+1 (7.71e+0) - 2.7698e+1 (1.23e+1) - 3.4353e+1 (1.21e+1) - 3.5204e+1 (1.07e+1) - 2.2615e+1 (6.79e+0) - 1.0808e+1 (4.61e+0) 
7 16 4.0786e+1 (1.23e+1) - 9.1856e+1 (2.30e+1) - 1.3671e+2 (3.93e+1) - 1.0163e+2 (2.59e+1) - 1.0565e+2 (3.10e+1) - 1.8853e+1 (1.07e+1) 
9 18 4.9367e+1 (2.10e+1) - 9.8379e+1 (2.19e+1) - 3.0093e+2 (6.95e+1) - 7.4604e+1 (2.36e+1) - 2.2582e+2 (8.38e+1) - 2.4212e+1 (1.00e+1) 
11 20 4.8544e+1 (2.32e+1) - 1.0337e+2 (2.41e+1) - 4.2610e+2 (7.57e+1) - 1.6707e+2 (4.47e+1) - 3.0078e+2 (1.48e+2) - 2.4741e+1 (1.09e+1) 
13 22 4.6073e+1 (2.10e+1) - 1.1606e+2 (2.91e+1) - 4.4387e+2 (9.68e+1) - 2.1248e+2 (4.59e+1) - 3.4328e+2 (1.72e+2) - 2.7671e+1 (1.01e+1) 

DTLZ4 

5 14 3.1130e-1 (1.17e-1) + 4.8496e-1 (1.76e-1) + 3.2078e-1 (1.19e-1) + 2.4681e-1 (1.09e-2) + 3.2818e-1 (1.14e-1) + 6.9640e-1 (2.67e-1) 
7 16 4.3175e-1 (9.06e-2) + 5.4596e-1 (1.45e-1) = 5.2451e-1 (5.68e-2) = 4.1398e-1 (2.10e-2) + 3.9058e-1 (4.76e-2) + 5.1378e-1 (8.10e-2) 
9 18 5.4026e-1 (8.12e-2) + 6.1650e-1 (7.90e-2) = 7.3844e-1 (5.81e-2) - 5.6967e-1 (2.34e-2) + 5.0050e-1 (9.67e-3) + 5.7693e-1 (7.65e-2) 
11 20 5.9578e-1 (5.59e-2) = 7.1343e-1 (5.64e-2) - 8.6763e-1 (1.02e-1) - 6.6392e-1 (3.06e-2) - 5.3710e-1 (5.90e-3) + 6.2001e-1 (4.09e-2) 
13 22 6.5087e-1 (3.01e-2) = 8.0061e-1 (5.48e-2) - 9.3719e-1 (9.61e-2) - 7.4588e-1 (3.51e-2) - 6.0056e-1 (6.13e-3) + 6.6089e-1 (2.22e-2) 

DTLZ5 

5 14 1.6175e-1 (4.25e-2) - 1.6439e-1 (2.74e-2) - 3.6231e-1 (1.96e-1) - 2.4221e-1 (9.91e-2) - 2.0484e-1 (4.75e-2) - 7.4630e-2 (2.30e-2) 
7 16 2.0970e-1 (3.24e-2) - 3.0911e-1 (5.22e-2) - 1.7155e+0 (2.96e-1) - 5.6717e-1 (1.32e-1) - 2.7604e-1 (6.31e-2) - 1.3038e-1 (2.05e-2) 
9 18 2.7134e-1 (6.10e-2) - 4.0732e-1 (6.82e-2) - 2.1849e+0 (9.07e-2) - 4.8644e-1 (8.45e-2) - 3.6999e-1 (1.03e-1) - 1.1816e-1 (2.07e-2) 
11 20 2.9177e-1 (4.96e-2) - 5.3135e-1 (9.33e-2) - 2.2906e+0 (1.19e-1) - 6.7444e-1 (2.77e-1) - 3.9327e-1 (8.70e-2) - 1.9758e-1 (4.73e-2) 
13 22 3.2331e-1 (4.45e-2) - 5.8488e-1 (6.83e-2) - 2.3064e+0 (1.20e-1) - 1.1950e+0 (1.60e-1) - 5.1186e-1 (1.52e-1) - 2.0130e-1 (2.86e-2) 

DTLZ6 

5 14 1.5844e+0 (6.64e-1) - 2.7003e+0 (8.27e-1) - 4.0085e+0 (1.08e+0) - 2.7553e+0 (7.48e-1) - 1.2107e+0 (7.44e-1) - 7.2267e-1 (6.38e-1) 
7 16 3.6969e+0 (9.85e-1) - 5.6699e+0 (8.76e-1) - 8.7117e+0 (4.17e-1) - 7.2730e+0 (6.68e-1) - 2.4519e+0 (5.14e-1) - 2.0669e+0 (9.87e-1) 
9 18 4.7020e+0 (8.09e-1) - 5.1617e+0 (6.35e-1) - 9.1436e+0 (2.30e-1) - 5.1582e+0 (1.10e+0) - 2.9678e+0 (4.99e-1) - 1.9307e+0 (9.65e-1) 
11 20 4.9322e+0 (9.53e-1) - 6.0111e+0 (5.45e-1) - 9.0743e+0 (3.03e-1) - 8.3884e+0 (5.39e-1) - 3.1118e+0 (4.54e-1) - 2.4958e+0 (1.10e+0) 
13 22 4.7919e+0 (9.95e-1) - 6.5463e+0 (5.88e-1) - 9.1985e+0 (2.77e-1) - 9.0648e+0 (3.87e-1) - 3.3198e+0 (5.62e-1) - 2.6468e+0 (1.15e+0) 

DTLZ7 

5 24 4.8570e-1 (7.08e-2) - 6.8643e-1 (2.70e-1) - 6.6143e-1 (2.59e-1) - 5.6439e-1 (9.35e-2) - 4.5482e-1 (1.72e-1) = 3.7654e-1 (2.76e-2) 
7 26 1.2673e+0 (2.72e-1) - 1.3526e+0 (3.15e-1) - 1.1221e+0 (1.20e-1) - 2.1009e+0 (3.22e-1) - 9.1244e-1 (2.73e-1) - 7.3020e-1 (4.25e-2) 
9 28 5.6108e+0 (1.62e+0) - 6.6116e+0 (1.77e+0) - 3.5192e+0 (7.76e-1) - 1.0478e+1 (4.01e+0) - 1.3702e+0 (3.11e-1) = 1.6223e+0 (6.40e-1) 
11 30 6.0230e+0 (9.21e-1) - 7.5748e+0 (1.77e+0) - 6.8515e+0 (1.35e+0) - 7.6702e+0 (1.18e+0) - 5.4859e+0 (2.12e+0) - 2.7465e+0 (5.53e-1) 
13 32 8.0454e+0 (1.24e+0) - 1.2266e+1 (1.45e+0) - 1.0404e+1 (2.07e+0) - 1.0567e+1 (1.04e+0) - 1.1249e+1 (2.22e+0) - 4.9619e+0 (7.37e-1) 

+/-/= 6/23/6 2/28/5 1/32/2 5/30/0 8/24/3   

5.2 TSMSNSGAIII Solving for MaJDTOSC 

5.2.1 Simulation Experiment Parameter Setting 
Table 3 shows the parameters of the multi-user MEC scenario. 
 

Table 3. Multi-user MEC scenario parameter settings 
Parameters Description Value 
 Communication range 22.2 2.2 km×  
 Subtask type 1 ~ 5  
 Number of subtasks contained in the task 8 ~ 12  
ESCC  Edge server cache capacity 12 ~ 14 GB  
ESOC  Edge server offload capacity 130 ~ 190 GB  

2σ  Noise power 15 ~ 25 -dBm  
K  Energy conversion efficiency 610−  
N  Number of users 40 ~ 60  
M  Number of edge servers 10  
B  Channel bandwidth 80 ~ 200 Mbps  
h  Channel gain 1.08 ~ 1.50  
p  Signal transmission power 14 ~ 49 W  
f  Computing capability 100 ~ 1000 cycle/s  
ds  Task size 1 ~ 5 GB  

5.2.2 Analysis of Simulation Experiment Results 
In Fig. 5 to Fig. 9, the performance of TSMSNSGAIII solving MaJDTOSC is evaluated under 
different number of users settings. The results show that as the number of users increases, the 
task completion time, energy consumption, and load variability objectives become larger in 
the MEC environment. Whereas, the subtask hit rate and storage resource utilization objectives 
show stable performance under different number of users settings. Compared to the other five 
many-objective evolutionary algorithms, TSMSNSGAIII demonstrates a performance 
advantage in solving MaJDTOSC: in the task completion time objective, TSMSNSGAIII 
always provides the optimal objective value of the task completion time, irrespective of the 
number of users anticipated in the MEC setting; in the energy consumption objective, with the 
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number of users set to be 40, the For the energy consumption objective, TSMSNSGAIII 
achieves the optimal performance when the number of users is set to 40. When the number of 
users is set to 50, it is slightly worse than KnEA, and when the number of users is set to 60, it 
is slightly worse than hpaEA and KnEA. The reason for the above phenomenon is that because 
the energy consumption of subtasks when offloading is inevitably higher than the energy 
consumption of the local computation, the lower energy consumption objective value 
represents the fact that most of the subtasks fail in hitting the objective edge servers and choose 
to perform the computation locally instead of offloading it to the appropriate edge servers. 
Alternatively, the algorithm does not make a good trade-off between multiple objectives, 
which is achieved by the energy objective value obtained when solving MaJDTOSC in 
TSMSNSGAIII. Therefore, it is also concluded that TSMSNSGAIII performs excellently on 
the energy consumption objective value; on the subtask hit rate objective, TSMSNSGAIII also 
performs the best under all the user number setting conditions, indicating that the subtasks in 
the MEC environment are offloaded to the appropriate edge servers; on the load variability 
objective, TSMSNSGAIII always enables all the edge servers in the mobile In the load 
variability objective, TSMSNSGAIII always makes full use of the computing resources of all 
edge servers in the MEC environment; in the storage resource utilization objective, 
TSMSNSGAIII always allocates all types of services to the appropriate edge servers to support 
the computation of the corresponding subtasks. 
 

 
Fig. 5. ~ Fig. 9.  Performance of six many-objective evolutionary algorithms on five objectives with 

different numbers of users. 
 

In Fig. 10 to Fig. 14, the convergence curves of six many-objective evolutionary algorithms 
for solving MaJDTOSC with the number of users set to 50 are tested. The number of iterations 
is set to 1000 in this paper. In terms of the energy consumption objective, TSMSNSGAIII can 
reach the excellent objective value and remain stable with only 200 iterations compared to the 
other many-objective evolutionary algorithms. For task completion time, subtask hit rate, and 
cache resource utilization objectives, TSMSNSGAIII needs only 300 iterations to obtain the 
optimal objective values and maintain stability. For the load variability objective, 
TSMSNSGAIII obtains the optimal objective value with less fluctuation compared to other 
algorithms, showing good convergence and stability. 

40 50 60
0

1×103

2×103

3×103

4×103

5×103

6×103

7×103

Ta
sk

 C
om

pl
et

io
n 

Ti
m

e 
(m

s)

Number of Users

 NSGAIII
 hpaEA 
 MaOEADDFC
 SPEAR
 KnEA
 TSMSNSGAIII

40 50 60
0

4×105

8×105

1×106

2×106

2×106

2×106

3×106

3×106

4×106

4×106

En
er

gy
 C

on
su

m
pt

io
n 

(M
J)

Number of Users

 NSGAIII
 hpaEA 
 MaOEADDFC
 SPEAR
 KnEA
 TSMSNSGAIII

40 50 60
0

10

20

30

40

50

60

70

80

90

100

Su
bt

as
k 

H
it 

R
at

e 
(%

)

Number of Users

 NSGAIII
 hpaEA
 MaOEADDFC
 SPEAR
 KnEA
 TSMSNSGAIII

40 50 60
0

1×104

2×104

3×104

4×104

5×104

Lo
ad

 V
ar

ia
bi

lit
y 

(M
)

Number of Users

 NSGAIII
 hpaEA
 MaOEADDFC
 SPEAR
 KnEA
 TSMSNSGAIII

40 50 60
0

10

20

30

40

50

60

70

80

90

100

St
or

ag
e 

R
es

ou
rc

e 
U

til
iz

at
io

n 
(%

)

Number of Users

 NSGAIII
 hpaEA 
 MaOEADDFC
 SPEAR
 KnEA
 TSMSNSGAIII



1256                                                                                            Shi et al.: Many-objective joint optimization for dependency-aware  
task offloading and service caching in mobile edge computing 

 
Fig. 10. ~ Fig. 14. Iterations of six many-objective evolutionary algorithms on five objectives. 

6. Conclusion 
In this paper, we study the problem of joint optimization of dependency-aware subtask 
offloading and service caching in a multi-user, resource-constrained MEC scenario. After 
comprehensively considering the impact of dependency-aware subtasks, resource constraints 
of edge servers, and multi-users on the formulation of task offloading and service caching 
policies, we construct a many-objective joint optimization model for dependency-aware task 
offloading and service caching (MaJDTOSC), in which five optimization objectives are 
considered: task completion time, energy consumption, subtask hit rate, load variability, and 
storage resource utilization. In order to solve MaJDTOSC better, a many-objective 
evolutionary algorithm TSMSNSGAIII based on the Three-Stages Mating Selection (TSMS) 
strategy is proposed. Simulation results show that TSMSNSGAIII exhibits excellent 
performance compared to the other five many-objective evolutionary algorithms in solving 
models set with different numbers of users. Therefore, it is concluded that TSMSNSGAIII can 
provide suitable sub-task offloading and service caching strategies in multi-user, resource-
constrained MEC scenarios. 
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