• Title/Summary/Keyword: constrained input

Search Result 146, Processing Time 0.023 seconds

Time-optimal control for motors via neural networks (신경회로망을 이용한 모터의 시간최적 제어)

  • 최원수;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1169-1172
    • /
    • 1996
  • A time-optimal control law for quick, strongly nonlinear systems has been developed and demonstrated. This procedure involves the utilization of neural networks as state feedback controllers that learn the time-optimal control actions by means of an iterative minimization of both the final time and the final state error for the known and unknown systems with constrained inputs and/or states. The nature of neural networks as a parallel processor would circumvent the problem of "curse of dimensionality". The control law has been demonstrated for a velocity input type motor identified by a genetic algorithm called GENOCOP.

  • PDF

Implementation of the Self-tuning Control Algorithm with an Input- amplitude Constraint (제어입력 크기가 제한되는 자기동조 제어알고리즘의 구현에 관한 연구)

  • 장효환;정회범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2153-2161
    • /
    • 1993
  • Self-tuning control algorithms for an input-amplitude constrained system are developed and implemented. Magnitude of control input for small motors is generally restricted to narrow bound due to actuator saturation. The gain-adjusted control algorithm and the bounded-gain control algorithm proposed in this study yield smoother control input variations within the magnitude constraints comparing with the existing Clarke's suboptimal control algorithm. In the gain-adjusted control algorithm, the feedforward gain is adjusted using maximum gain, while in the bounded-gain control algorithm, the feedforward gain is bounded using weighting factor. For the DC servo motor control, the system performances of the proposed algorithms are compared with those of the existing algorithm by computer simulation and experiment. It is shown that the input variations of the proposed algorithms are smoother as compared with the existing algorithm.

On Sensitivity of Design Variables for Automation of Iterative Design Procedures (반복 설계 과정의 자동화를 위한 설계 변수 영향관계에 관한 연구)

  • Ryu, Gap-Sang;Sin, Jung-Ho
    • 한국기계연구소 소보
    • /
    • s.18
    • /
    • pp.125-129
    • /
    • 1988
  • This paper proposes a sensitivity technique for analysis of the relationships between input variables (known values) and output variables(unknown values), These design variables are constrained by design equations. Thus, the output variables can be calculated by solving the equations with eliminating the input variables from the equations because the input variables become constants. If the output variables are not satisfied, the values of the input variables must be adjusted by increasing or decreasing the values and then the problem must be solved again. This is called as the iterative design procedure. The sensitivity technique, presented in this paper, gives the sensitivity on the changes of the values of the output variables to the input variables.

  • PDF

Impacts of Wind Power Integration on Generation Dispatch in Power Systems

  • Lyu, Jae-Kun;Heo, Jae-Haeng;Kim, Mun-Kyeom;Park, Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.453-463
    • /
    • 2013
  • The probabilistic nature of renewable energy, especially wind energy, increases the needs for new forms of planning and operating with electrical power. This paper presents a novel approach for determining the short-term generation schedule for optimal operations of wind energy-integrated power systems. The proposed probabilistic security-constrained optimal power flow (P-SCOPF) considers dispatch, network, and security constraints in pre- and post-contingency states. The method considers two sources of uncertainty: power demand and wind speed. The power demand is assumed to follow a normal distribution, while the correlated wind speed is modeled by the Weibull distribution. A Monte Carlo simulation is used to choose input variables of power demand and wind speed from their probability distribution functions. Then, P-SCOPF can be applied to the input variables. This approach was tested on a modified IEEE 30-bus system with two wind farms. The results show that the proposed approach provides information on power system economics, security, and environmental parameters to enable better decision-making by system operators.

Optimal PID Controller Design for DC Motor Speed Control System with Tracking and Regulating Constrained Optimization via Cuckoo Search

  • Puangdownreong, Deacha
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.460-467
    • /
    • 2018
  • Metaheuristic optimization approach has become the new framework for control synthesis. The main purposes of the control design are command (input) tracking and load (disturbance) regulating. This article proposes an optimal proportional-integral-derivative (PID) controller design for the DC motor speed control system with tracking and regulating constrained optimization by using the cuckoo search (CS), one of the most efficient population-based metaheuristic optimization techniques. The sum-squared error between the referent input and the controlled output is set as the objective function to be minimized. The rise time, the maximum overshoot, settling time and steady-state error are set as inequality constraints for tracking purpose, while the regulating time and the maximum overshoot of load regulation are set as inequality constraints for regulating purpose. Results obtained by the CS will be compared with those obtained by the conventional design method named Ziegler-Nichols (Z-N) tuning rules. From simulation results, it was found that the Z-N provides an impractical PID controller with very high gains, whereas the CS gives an optimal PID controller for DC motor speed control system satisfying the preset tracking and regulating constraints. In addition, the simulation results are confirmed by the experimental ones from the DC motor speed control system developed by analog technology.

Vision-based Real-time Lane Detection and Tracking for Mobile Robots in a Constrained Track Environment

  • Kim, Young-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.29-39
    • /
    • 2019
  • As mobile robot applications increase in real life, the need of low cost autonomous driving are gradually increasing. We propose a novel vision-based real-time lane detection and tracking system that supports autonomous driving of mobile robots in constrained tracks which are designed considering indoor driving conditions of mobile robots. Considering the processing of lanes with various shapes and the pre-adjustment of operation parameters, the system structure with multi-operation modes are designed. In parameter tuning mode, thresholds of the color filter is dynamically adjusted based on the geometric property of the lane thickness. And in the unstable input mode of curved tracks and the stable input mode of straight tracks, lane feature pixels are adaptively extracted based on the geometric and temporal characteristics of the lanes and the lane model is fitted using the least-squared method. The track centerline is calculated using lane models and the motion model is simplified and tracked by a linear Kalman filter. In the driving experiments, it was confirmed that even in low-performance robot configurations, real-time processing produces the accurate autonomous driving in the constrained track.

Identification of Soil Stiffness Using Forced Vibration Test Data (강제진동시험자료를 사용한 지반의 강성계수 추정)

  • 최준성;이종세;김동수;이진선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.101-108
    • /
    • 2002
  • This paper presents an input and system identification technique for a free-field system using forced vibration data. Identification is carried out on geotechnical experiment site at Yong-jong Island where Inchon International Airport being constructed. The identified quantities are the input load as well as the shear moduli of the free-field soil regions. The dynamic response analysis on the free-field system is carried out using the finite element method incorporating the infinite element formulation fur the unbounded layered soil medium. The criterion function for the parameter estimation is constructed using the frequency response amplitude ratios of the dynamic responses measured at several points of the free-field, so that the information on the input loading may be excluded. The constrained steepest descent method is employed to obtain the revised parameters. The simulated dynamic responses using the identified parameters and input load show excellent agreements with the measured responses.

  • PDF

Stable Input-Constrained Neural-Net Controller for Uncertain Nonlinear Systems

  • Jang-Hyun Park;Gwi-Tae Park
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.108-114
    • /
    • 2002
  • This paper describes the design of a robust adaptive controller for a nonlinear dynamical system with unknown nonlinearities. These unknown nonlinearities are approximated by multilayered neural networks (MNNs) whose parameters are adjusted on-line, according to some adaptive laws far controlling the output of the nonlinear system, to track a given trajectory. The main contribution of this paper is a method for considering input constraint with a rigorous stability proof. The Lyapunov synthesis approach is used to develop a state-feedback adaptive control algorithm based on the adaptive MNN model. An overall control system guarantees that the tracking error converges at about zero and that all signals involved are uniformly bounded even in the presence of input saturation. Theoretical results are illustrated through a simulation example.

  • PDF

A Robust Adaptive Control for Permanent Magnet Synchronous Motor Subject to Parameter Uncertainties and Input Saturations

  • Wu, Shaofang;Zhang, Jianwu
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2125-2133
    • /
    • 2018
  • To achieve high performance speed regulation, a robust adaptive speed controller is proposed for the permanent magnet synchronous motor (PMSM) subject to parameter uncertainties and input saturations in this paper. A nonlinear adaptive control is introduced to compensate the PMSM speed tracking errors due to uncertainties, disturbances and control input saturation constraints. By combining the adaptive control and the nonlinear robust control based on the interconnection and damping assignment (IDA) strategy, a new robust adaptive control is designed for speed regulation of PMSM. Stability and robustness of the closed-loop control system involved with the constrained control inputs rather than unconstrained control inputs are validated. Simulations for PMSM control in the presence of uncertainties and saturations nonlinearities show that the proposed approach is effective to regulate speed, and the average tracking error using the proposed approach is at least 32% smaller than the compared methods.

Adaptive Nonlinear Constrained Predictive Control of pH Neutralization in Fed-batch Bio-reactor

  • Zhe, Xu;Kim, Hak-Kyeong;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.90-95
    • /
    • 2003
  • In this paper, an Adaptive Nonlinear Constrained Model Predictive Control (ANCMPC) is presented for a pH control in a fed-batch bio-reactor. The pH model is represented with Hammerstein Model. The static nonlinear part of Hammerstein model is described with the static pH model, and the dynamic linear part of the Hammerstein model is described with the CARIMA model. The parameters of the CARIMA model is estimated on-line with the input and output measurements of the system using a recursive least squares type of identi�cation algorithm. The e�ectiveness of the proposed controller is shown through simulations.

  • PDF