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Abstract – The probabilistic nature of renewable energy, especially wind energy, increases the needs 

for new forms of planning and operating with electrical power. This paper presents a novel approach 

for determining the short-term generation schedule for optimal operations of wind energy-integrated 

power systems. The proposed probabilistic security-constrained optimal power flow (P-SCOPF) 

considers dispatch, network, and security constraints in pre- and post-contingency states. The method 

considers two sources of uncertainty: power demand and wind speed. The power demand is assumed 

to follow a normal distribution, while the correlated wind speed is modeled by the Weibull 

distribution. A Monte Carlo simulation is used to choose input variables of power demand and wind 

speed from their probability distribution functions. Then, P-SCOPF can be applied to the input 

variables. This approach was tested on a modified IEEE 30-bus system with two wind farms. The 

results show that the proposed approach provides information on power system economics, security, 

and environmental parameters to enable better decision-making by system operators. 
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1. Introduction 
 

Countries around the world are encouraging the 

development and integration of renewable energy sources. 

Sustainable and clean energy resources, especially wind 

power, are rapidly becoming significant generating 

technologies. However, the intermittency, variability, and 

limited predictability of wind power increase uncertainty 

and make power systems vulnerable. This probabilistic 

nature of wind creates profound challenges in planning and 

operating power systems, across the range from short-term 

regulation and balancing problems to long-term 

transmission network planning. Even if wind power were 

predicted perfectly, variability is still a vital issue that must 

be considered when other generation resources are being 

scheduled. The non-wind generation resources, namely, 

controllable resources, have to be dispatched skillfully 

considering additional safeguards for wind power 

integration such as sufficient reserves, demand response, 

and energy storage [1, 2]. 

Deterministic approaches have been widely used in 

power system planning and operation for many years. 

Optimal power flow (OPF) is a common tool for 

determining short-term generation scheduling. However, a 

deterministic approach may no longer represent the effects 

of probabilistic characteristics on dispatch results. Although 

probabilistic approaches to power system analysis deserve 

more attention in power systems that include large amounts 

of wind power generation, the development of such 

approaches is still in the early stages. Since Borkowska 

first proposed the probabilistic load flow in 1974 [3], some 

research has developed this into probabilistic optimal 

power flow (P-OPF). Initially, P-OPF mostly considered 

demand uncertainty [4-8]. However, the demand uncertainty, 

which is generally the only uncertainty in power system 

operation except for disturbances, is not very large and 

exhibits a periodic pattern; it can be forecast reasonably 

accurately based on weather and historical data. Research 

related to the P-OPF methodology can be classified into 

simulation methods and analytical methods. Simulation 

methods put emphasis on computational efficiency due to 

the large sample set involved. Analytical methods include 

the two-point estimate method [4-6], cumulant method [7], 

and first-order second-moment method [8]. The cumulant 

method relies on the behavior of random variables and 

their cumulants, and it requires calculating an inverse 

Hessian. The first-order second-moment method finds the 

statistical characteristics of random variables such as 

means and standard deviations. The two-point estimate 

method was introduced by [4] for solving P-OPF with high 

computational efficiency. However, the two-point estimate 

method may lead to inaccurate solutions when the input 

variables have large variances. All these approaches 

assume that the random variables are uncorrelated. The 
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most straightforward method of probabilistic power system 

analysis is by Monte Carlo simulation (MCS), which 

repeats a simulation with input variables selected from the 

probability distribution functions (PDFs) of random 

variables. It is often used for its accurate solutions and 

simple implementation, in spite of the large computational 

effort required. Above all, a MCS makes using existing 

deterministic OPF for the inputs possible. 

Since security is the most crucial aspect of a system 

operator’s planning and operation of a power system, 

security tools and practices are commonly used, such as 

security-constrained unit commitment (SC-UC) or 

security-constrained optimal power flow (SCOPF) [9-12]. 

Since the security problem becomes more critical due to 

larger uncertainties in wind energy-integrated power 

systems, the existing P-OPF has to be developed to involve 

security constraints, such as limits for the transmission line 

flow and bus voltage. The security issues, however, have 

been a much-neglected branch of P-OPF research until now. 

Furthermore, most research dealing with wind power 

integration has assumed a single wind turbine or wind farm, 

not considering the circumstances of the wind power boom. 

With large numbers of wind turbines in multiple wind 

farms, correlated wind speed modeling is useful for 

predicting the aggregate wind power generation, regardless 

of wind speed forecasting techniques [13, 14]. This method 

also facilitates studies on the impact of future wind farm 

installations. To generate realistic and synthetic random 

variables of wind speeds at different locations, correlated 

wind speeds have been used for proposed probabilistic 

security-constrained optimal power flow (P-SCOPF). 

Cholesky decomposition [15], which is the most common 

technique for generating multivariate distributions of 

random variables, was used to obtain the correlated wind 

speeds with efficient computation. Although the Cholesky 

decomposition allows only the simulation of a single 

operating point, it amounts to nothing for P-SCOPF, which 

handles generation scheduling.  

In this paper, we considered the limits of transmission 

flow and bus voltage in pre- and post-contingency cases as 

security constraints. We also applied correlated wind 

speeds generated by the Weibull distribution function to a 

proposed P-SCOPF methodology. The proposed method 

provides information on power system security, economics, 

and environmental aspects to system operators so that they 

can make better decisions for power system operation. 

Therefore, in this work, the P-SCOPF problem includes 

the following: 

� uncertainty modeling for demand and wind speed; 

� MCS for choosing input variables of demand and 

wind speed; 

� network constraints (AC power flow equations); and 

� security constraints (transmission flow limits in pre- 

and post-contingency cases). 

 

The remainder of this paper is organized as follows. 

Section 2 deals with modeling uncertainties for the P-

SCOPF problem. Section 3 describes the correlated wind 

speed and power in detail. Section 4 presents the 

mathematical formulation of P-SCOPF with its solution 

procedure, while Section 5 presents and discusses numerical 

results. Section 6 summarizes our conclusions.  

 

 

2. Uncertainty Modeling 

 

2.1 Normal distribution for demand uncertainty 

 

The system demand has a periodic pattern that changes 

based on many factors such as temperature and day of the 

week. The variability of demand is smaller than that of 

wind speed and the forecasting is fairly accurate, especially 

in the short term. Generally, demand uncertainty for short-

term scheduling can be modeled as a normal distribution 

[16], which is expressed as follows: 

 

  (1) 

 

2.2 Weibull distribution for wind uncertainty 

 

The wind speed cannot be described by a normal 

distribution due to its high variability and intermittency. 

International Electrotechnical Commission (IEC) standards 

recommend modeling wind speed at a certain location 

using a two-parameter Weibull or Rayleigh distribution. 

The Weibull distribution is one of the most commonly used 

distributions in various fields due to its flexibility, and it is 

appropriate for reflecting wind speed. The Weibull 

distribution can have various distribution forms, depending 

on the value of its shape parameter k. The Rayleigh 

distribution is a specific Weibull distribution form where 

the shape factor k = 2. The general structure of the two-

parameter Weibull PDF is written as shown in these 

equations: 

 

  (2) 

  (3) 

  (4) 

 

 

3. Correlated Wind Speed and its Power 

 

3.1 Wind speed correlation 

 

Generally, the consideration of correlation between wind 

speeds has great influence on electrical networks with wind 
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farms. Given series of wind speeds at different locations, a 

correlation coefficient can be calculated from the 

covariance and standard deviations of the wind speeds at 

each location. Here, the correlation coefficient represents 

the degree of relationship among the series of wind speeds. 

The correlation coefficient is defined in the following 

equation: 

 

  (5) 

 

where ρ is the correlation coefficient, σ1,2 is the covariance 

between series 1 and 2, and σ1 and σ2 are the standard 

deviations of both series. 

A close relationship exists between the distance among 

the wind farms and the correlation of their wind speeds due 

to similar meteorological conditions [17]. The locations far 

from each other have a small correlation close to 0 or even 

a negative correlation, while locations in close proximity 

have a positive correlation close to 1, or at least greater 

than 0.8. Thus, we assume that correlation of wind speed in 

the same wind farm is sufficiently highly correlated, i.e., 

correlation is greater than 0.8. Therefore, we obtain the 

generated power of a wind farm using this equation: 

 

  (6) 
 

On the other hand, due to the weak correlation of wind 

speeds in widely separated wind farms, wind speeds at 

each location should be necessary. The mean and standard 

deviation of the wind speeds at the locations can easily be 

calculated and they are used to generate Weibull random 

variable vectors. However, these vectors are independent of 

each other yet. To make the wind speeds vary as a 

correlated set, it requires producing a joint Weibull 

distribution which consists of multivariate random variable 

vectors. The multivariate Weibull random variable vectors 

are obtained by following procedure.  

Step 1. Find the mean value and standard deviation based 

on the hourly historical wind speeds during a year 

for each location. The scale parameter c and shape 

parameter k of the Weibull distribution vary 

depending on the geographical condition of a 

location. Several sources provide guidance in 

determining these two parameters from wind speed 

data [18,19]. In this paper, we easily implemented 

this Weibull distribution using MATLAB; it 

provides the wblfit() function, which returns the 

maximum likelihood estimates of the parameters of 

the Weibull distribution given the wind speeds 

vectors. 

Step 2. Find the correlation coefficient ρ of wind speeds at 

these locations using the MATLAB corr() function, 

which returns a matrix containing the pairwise 

linear correlation coefficient. 

Step 3. Produce an uncorrelated random variable vector z 

that consists of univariate random variables with 

mean value µz and correlation matrix Ωz using the 

Step 1 results for scale parameter c and shape 

parameter k. The z1 indicates the Weibull 

distribution of wind farm 1 only. This can be 

implemented using the MATLAB function wblrnd(), 

which returns an array of random numbers chosen 

from the Weibull distribution with c and k. Then, 

the uncorrelated vector z is expressed as shown in 

the following equations: 

 
  (7) 

  (8) 

  (9) 

 

Here, we need to introduce a new vector y to obtain 

the joint Weibull distribution, which consists of 

multivariate random variables y1, y2,…,yn. The 

correlated and uncorrelated random variable vectors 

y and z have following relationship according to the 

Cholesky decomposition method, which consists of 

a lower triangular matrix L and its transposition one 

LT. 
 

   (10) 

   (11) 

 

Step 4. Use the MCS method to select correlated wind 

speeds v randomly from Weibull distribution y. 

Equation (10) denotes that if a wind speed for wind 

farm y1 is obtained, wind speeds for the other wind 

farms y2,…,yn are determined automatically using a 

Cholesky matrix that connotes their correlation. For 

chosen inputs of wind speeds, the deterministic 

approach can easily be applied for system analysis. 

 

3.2 PDF for generated power of a wind turbine 

 

The active power output generated from a wind turbine 

can be represented as a function of the wind speed V. The 

most frequently used quadratic model for expressing wind 

turbine power is described by 

 

  (12) 

 

Fig. 1 shows the quadratic power curve for a Vestas 

V100 wind turbine, which is used for the numerical 

example in Section 5. The PDF for the generated power of 

a wind turbine is a function of wind power PW. Each part of 
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the power curve in Eq. (12) should be analyzed separately 

on the PDF for generated power of a wind turbine 

depending on the value of vin, vr, and vout. Hence, the PDF 

for generated power can be divided and expressed as 

follows [16]. 

 

 

Fig. 1. Power curve for the Vestas 1.8 MW wind turbine. 

 

 

 

  (13) 

 

Finally, the aggregate wind power is 

 

  (14) 

 

 

4. Problem Formulation 

 

4.1 P-SCOPF 

 

The input variables of system demand and wind speed 

are randomly selected from their PDF by MCS. Then, the 

deterministic SCOPF is used to analyze the system state for 

the selected input variables. The SCOPF is formulated as a 

nonlinear optimization problem, as shown in (15). In the 

objective function of SCOPF, quadratic cost function for 

operating cost, which is the most common model for 

operation tools such as ED and OPF, has been used. As 

SCOPF is a tool for short-term generation scheduling, 

maintenance and investment cost are not considered in this 

study. The wind generation of bus i should be subtracted 

from the demand of that bus as we utilized PQ bus 

modeling (negative demand) for the wind turbine. In 

addition, the transmission network loss PL is considered in 

the problem, since power plants are spread out 

geographically. 
 

  (15) 

 

subject to the following constraints: 

1. power demand balance 

 

 

  (16) 

 

  (17) 
 

2. power output limit of conventional generating units 

 

  (18) 

  (19) 

 

3. power output limit of wind turbines 

 

  (20) 

 

4. bus voltage limit 

 

  (21) 

 

5. steady-state transmission flow limits of line l 

 

  (22) 

 

6. contingency state transmission flow limits of line l  

 

  (23) 

 

Linear sensitivity factors are used to formulate 

transmission flow limits in pre- and post-contingency 

conditions. 
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Fossil fuel-fired thermal generating units decrease their 

power output equivalent to the amount generated by wind. 

This leads to a commensurate expected reduction in 

operating cost and CO2 emissions. Even though reducing 

CO2 emissions is not a primary target of this paper, this 

comes as a by-product of using a clean energy source like 

wind. The amount of CO2 emissions produced when unit i 

generates at power level Pi is expressed as 

 

  (24) 

 

4.2 Solution procedure 

 

The proposed approach is implemented sequentially, as 

shown in Fig. 2. 

Step 1: Start the initial configuration with available system 

information. 

Step 2: Produce the PDF of the demand according to a 

normal distribution. 

Step 3: Use Eqs. (2) - (4) to find the mean µ, standard 

deviation σ, scale parameter c, and shape parameter 

k. Determine the Weibull distribution model to 

produce correlated wind speeds using the pro-

cedures described in Section 2.2. 

Step 4: This gives PDFs of two uncertainties: demand and 

wind speeds. Randomly select inputs from the 

probability distributions of random variables using 

MCS. Then, for every selected input, use the 

deterministic optimal power flow to determine the 

optimal solution. 

 

 

Fig. 2. Flowchart of the P-SCOPF procedure. 

Step 5: Solve SCOPF for contingency case j until all 

contingencies are satisfied to account for the 

transmission line security constraint. 

Step 6: Repeat these processes until no violations on either 

transmission flow limit or bus voltage limit are 

found. 

 

 

5. Case Study 

 

The validity of the proposed method was tested on a 

modified IEEE 30-bus system with eight generating units 

(six conventional units and two wind farms), 41 

transmission lines, and 20 demand sides. Fig. 3 shows a 

single-line diagram of the test system; the other data 

related to the test system can be found in [20]. Table 1 

gives the mean value of demand for each bus, which is 

Fig. 3. Modified IEEE 30-bus system with 2 wind farms. 

 

Table 1. Mean value of power demand. 

Bus 
Mean active demand 

[MW] 
Mean reactive 

demand [MVar] 
Standard deviation 

[MW] 

2 21.7 21.7 1.085 

3 2.4 1.2 0.12 

4 7.6 1.6 0.38 

7 22.8 10.9 1.14 

8 30 30 1.5 

10 5.8 2 0.29 

12 11.2 7.5 0.56 

14 6.2 1.6 0.31 

15 8.2 2.5 0.41 

16 3.5 1.8 0.175 

17 9 5.8 0.45 

18 3.2 0.9 0.16 

19 9.5 3.4 0.475 

20 2.2 0.7 0.11 

21 17.5 11.2 0.875 

23 3.2 1.6 0.16 

24 8.7 6.7 0.435 

26 3.5 2.3 0.175 

29 2.4 0.9 0.12 

30 10.6 1.9 0.53 
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considered to follow a normal distribution with a standard 

deviation of 5%. Table 2 shows the cost and emission 

coefficient data for the thermal generating units. We 

assumed that wind power generation is emission-free and 

consumes no fuel. 

Two wind farms, WF1 and WF2, inject power directly 

into the transmission system at buses 8 and 21, respectively. 

Each wind farm contains 20 Vestas V100 1.8-MW wind 

turbines, with a total capacity of 36 MW. The total wind 

power capacity of 72 MW is thus approximately 20% of 

the total generation capacity. Many countries target a 20% 

penetration of wind power by the year 2030. The proposed 

approach consists of two parts: MCS for selecting the 

demand and wind speed input variables, and SCOPF. A 

standard Pentium PC with a 3.0-GHz processor and 2 GB 

of random access memory was used to test the proposed 

model with Primal-dual interior point method [21, 22]. 

 

Table 2. Cost and emission coefficient data for thermal 
generating units. 

Fuel cost coefficient CO2 emission coefficient 
Bus 

a b c α β γ ζ λ 

1 (G1) 0.02 2 0 0.0126 -1.1 22.983 2.0e-4 0 

2 (G2) 0.0175 1.75 0 0.0200 -0.1 25.313 5.0e-4 0 

13 (G3) 0.025 3 0 0.0270 -0.01 25.505 1.0e-6 0 

22 (G4) 0.0625 1 0 0.0291 -0.005 24.900 2.0e-3 0 

23 (G5) 0.025 3 0 0.0290 -0.004 24.700 1.0e-6 0 

27 (G6) 0.00834 3.25 0 0.0271 -0.0055 25.300 1.0e-5 0 

 

5.1. Power demand uncertainty 

 

In general, sufficient samples for MCS ensure accurate, 

reliable results. To determine a reasonable sample size for 

the MCS, the relationship between the sample size and its 

performance is examined. Table 3 shows the mean value 

and standard deviation of operating cost and computation 

time for 20 implementations with different numbers of 

samples. The error rate of the standard deviation, which 

indicates the simulation fallibleness, is defined as follows: 

 

  (25) 

 
The computation time increases in almost direct 

proportion to the number of MCS samples while the error 

rate of standard deviation decreases. In particular, it is 

interesting to note that the error rate has decreased 

considerably in case of 1,000 samples. From the results of 

error rate and computation time, it seems suitable to say 

that 1,000 samples provide precise solution within 

reasonable computation time. 

Fig. 4 illustrates the normal distribution curve for the 

power demand uncertainty of the test system using MCS 

with 1,000 samples. With larger numbers of MCS samples, 

the power demand histogram converged to the normal 

distribution curve. As shown in Fig. 4, the power demand 

uncertainty was very close to being distributed normally. It 

is confirmed once more that a sample size of 1,000 

provides the optimal value of demand uncertainty fitness 

with reasonable computational accuracy. 
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Fig. 4. Power demand uncertainty with a normal distri-
bution. 

 

Table 3. Relationship between the MCS sample size and 
performance 

No. of 
samples 

Mean value of 
OC [$] 

Standard deviation 
of OC [$] σ

ε [%] 
Computation 

time [s] 

500 607.84 3.03 1.2 56.3 

1,000 608.77 1.75 0.28 118.6 

3,000 608.76 1.43 0.23 352.1 

5,000 608.05 1.1 0.19 594.4 

10,000 608.16 1.08 0.18 1191.2 

 

5.2. Correlated wind speed 

 

Each Vestas V100 wind turbine had a rated power of 1.8 

MW at 11 m/s, a cut-in wind speed of 3 m/s, and a cut-out 

wind speed of 20 m/s. 

Table 4 shows the mean, standard deviation, Weibull 

parameters, and correlation coefficient for wind speed at 

the two wind farms. The mean values for the two locations 

were 3.32 and 3.37 m/s. Using the MATLAB wblrnd() 

function, we produced uncorrelated random variables with 

the two Weibull parameters for each location, 

 

   (26) 

   (27) 

   (28) 

Table 4. Results for the correlated Weibull distributions. 

 Bus 8 (WF1) Bus 21 (WF2) 

Mean value µ 3.32 3.37 

Standard deviation σ 1.89 1.77 

Scale parameter c 3.74 3.78 

Shape parameter k 1.83 1.94 

Correlation coefficient 
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The correlated Weibull random variables y can be solved 

as shown in Eq. (10).  

 

   (29) 

 

To confirm that the correlated wind speeds V generated 

by Weibull random variables y actually follow the Weibull 

distribution, we checked them by comparison with the 

normal distribution model. Fig. 5 and Fig. 6 show the 

probability plot for Weibull and normal distributions of y1 

and y2, respectively. These figures have a reference line 

that passes through the lower and upper quartiles of y1 and 

y2 (correlated Weibull random variables) to help determine 

whether the generated wind speeds follow the distribution. 

The results showed that y1 and y2 followed a Weibull 

distribution rather than a normal distribution. 
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Fig. 5. Probability plot of y1 for Weibull and normal 
distributions. 
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Fig. 6. Probability plot of y2 for Weibull and normal 
distributions. 

 

5.3. Base case solutions 

 

Table 5 shows the optimal solutions of P-SCOPF. The 

total expected operating costs were $577.46 and $612.84 

with and without wind power, respectively. The cor-

responding optimal solutions consider the power demand 

uncertainty in both cases. A mean system demand of 189.2 

MW must be covered by thermal plants and/or wind 

turbines.Fig. 7 and Fig. 8 represent the total expected 

operating cost with and without wind power, respectively. 

The line on each graph indicates the overall cost trend. The 

total expected operating cost was nearly $36 (6%) less 

when wind power covered some part of the demand. Note 

that in these figures, the total expected operating cost with 

wind power integration was distributed over a wider range 

of the cost axis and that wind power increased the 

uncertainty of the total expected operating cost. 

Furthermore, the uncertainty in the power system due to 

the variability and intermittency of wind power was greater 

than that of the power demand. 
 

Table 5. Optimal solutions of P-SCOPF. 

 
With only consideration 

of the load variations 
With consideration of 

wind and load variations 

G1 40.82 40.54 

G2 35.82 43.6 

G3 26.70 24.9 

G4 42.60 37.7 

G5 20.60 18.37 

Unit 
[MW] 

G6 25.77 21.67 

Total generation of 
thermal units [MW] 

192.31 186.77 

Loss [MW] 3.11 3.1 

Wind Power [MW] 0 5.53 

Total Cost [$] 612.84 577.46 

CO2 emission [ton] 0.272 0.256 
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Fig. 7. Total expected operating cost with wind power. 
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Fig. 8. Total expected operating cost without wind power. 
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Although wind power accounted for approximately 20% 

of the entire system capacity, it accounted for only 5.53 

MW (2.9%) of the system generation. The capacity factor, 

which is the ratio of the actual output of a plant to its 

potential output if it had produced at maximum capacity, is 

generally calculated over some specific period of time. 

When an index was introduced to represent the efficiency 

of the wind power in the test system, the capacity factor 

was nearly 7.5% (5.53 / 72 MW). 

Fig. 9 and Fig. 10 describe the power transfer through 

lines 6-8 and 22-21, which were connected to the wind 

farm buses. We concentrated on these two lines, which 

were directly influenced by the wind power generation. 

These figures showed that the power injected through the 

lines closest to the wind farm buses decreased because the 

generated wind power covered the demand of its own bus. 

Table 6 and Fig. 11 and show the total expected 

operating cost and CO2 emissions as a function of the 

installed wind power capacity. The total expected operating 

cost and CO2 emissions decreased as the installed wind 

power capacity increased. When wind power was 

approximately 20% of the total generation capacity, the 

total expected operating cost and CO2 emissions decreased 

by roughly $35.4 (6%) and 0.016 tons (5.7%), respectively. 

Wind power generation is directly proportional to installed 

wind power. On the other hand, reduction in total expected 

operating cost and CO2 emissions decreases as the installed 

wind power increases. The most expensive and most 

polluting thermal units reduce their power output as wind 

power is integrated into traditional power systems. This 

implies that wind power is the most cost effective and 

environmentally friendly in the early integration stage. 

Transmission network losses are seldom affected by 

wind power integration. Since we treated wind power like 

a negative demand on the bus, wind power integration had 

little effect on large changes in power transfer except on 

the buses adjacent to wind farms. The number of MCS 

samples significantly influenced the trade-off between 

solution accuracy and computation time. Using 1,000 MCS 

samples was sufficient to produce good results within an 

acceptable computation time of 137.3 s. 

 

5.4. Contingency case solutions 

 

This section describes how the P-SCOPF solution is 

obtained when the test system is subjected to different 

types of transmission line contingency. Contingency analysis 

could be performed over a set of plausible contingencies. 

In this study, the following critical contingencies were 

selected based on the relative mean values of the real 

power performance index (PI) [10]: 
Table 7 summarizes the total expected operating costs 
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Fig. 9. Power transfer of line 6-8. 
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Fig. 10. Power transfer of line 22-21. 

Table 6. Total expected operating cost and CO2 emission 
versus the installed wind power. 

Installed wind power 
[MW] 

Wind power 
generation 

[MWh] 

Total expected 
operating cost 

[$] 

CO2 emission 
[ton] 

0 0 612.84 0.272 
18 (10 wind turbines) 1.32 597.4 (-15.44) 0.265 (-0.07) 
36 (20 wind turbines) 2.62 589.3 (-8.1) 0.26 (-0.05) 
54 (30 wind turbines) 3.95 582.2 (-7.1) 0.258 (-0.02) 
72 (40 wind turbines) 5.53 577.4 (-4.7) 0.256 (-0.02) 

 

(a) N-1: outage of line 6-8 

(b) N-2: outage of lines 6-8 or 8-28  

(c) N-3: outage of lines 6-8, 8-28, or 28-27 

(d) N-4: outage of lines 6-8, 8-28, 28-27, or 6-7  

(e) N-5: outage of lines 6–8, 8–28, 28–27, 6–7, or 27–30 
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Fig. 11. Total expected operating cost and CO2 emissions 

as functions of the installed wind power. 
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for the various contingency cases. Note that the total 

expected operating costs in the contingency cases increased 

due to the dispatch of more-expensive units to cover 

additional possible contingencies. That is, the system 

operator tried to relieve the congestion management 

infeasibility and maintain system security during the 

contingency-based rescheduling operation. 

 

 

6. Conclusion 

 

This paper proposes a novel probabilistic approach for 

investigating the impacts of wind power integration. A 

major contribution of this paper is the development of the 

P-SCOPF algorithm, which considers the system security 

problem. The two uncertainties of demand and wind speed 

were modeled using the normal distribution and Weibull 

distribution, respectively. The method used correlated wind 

speeds to obtain the aggregate wind generation from all 

wind farms that contribute to solving the P-SCOPF. MCS 

was used to choose input variables of demand and wind 

speeds from their PDFs. Test results on a modified IEEE 

30-bus system demonstrated the feasibility of the proposed 

approach to solving the P-SCOPF problem. Compre-

hensive numerical results confirmed that the demand and 

correlated wind speeds closely followed normal and 

Weibull distributions, respectively. The introduction of 

wind speed correlation also enabled more realistic and 

accurate evaluations of the distribution function of power 

transfers through the lines. Due to the probabilistic nature 

of the uncertainties, all outcomes including total expected 

operating cost and power transfer resulted in PDF forms. 

The mean value of total expected operating cost as well as 

CO2 emissions decreased as the installed wind power 

increased. Furthermore the power injected into the bus 

connected to the wind farm decreased because of the wind 

power generation. When contingency constraints are 

imposed, the operating cost is higher than in the base case, 

as the system would be operated in a more conservative 

manner. This approach provides a trade-off among 

economics, uncertainty, security, and good computational 

accuracy. This produces useful information for independent 

system operators under conditions of vulnerability in a 

deregulated power industry. 
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Nomenclature 

 
i Index for bus  

n Index for wind farm 

m  Index for wind turbine 

NG Number of units  

NWT,n Number of wind turbines in n-th wind farm 

Nc Number of contingencies 

NWF Number of wind farms 

NB Number of buses 

ai,bi,ci Coefficients of the quadratic production cost 

function of unit i 

αi,βi,γi,ζi,λi  Coefficients of the CO2 emission function of 

unit i 

f(·) Probabilistic distribution function 

V Random variable of wind speed 

v  Wind speed element 

vin  Cut-in speed 

vr Wind turbine rated speed 

vout Cut-out speed 

Pi Power output of thermal generating unit i 

PD Power demand 

PL Transmission network losses of system 

PW(v)n,m Generated wind power from m-th wind turbine 

of n-th wind farm 

µPD Mean value of power demand 

σPD Standard deviation of power demand 

µV Mean value of wind speed 

σV Standard deviation of wind speed 

c Scale factor of Weibull distribution 

k Shape factor of Weibull distribution  

y Correlated Weibull random variable vectors 

L Cholesky decomposition matrix 

Г  Legendre’s gamma function 

Al,i Sensitivity of the flow on line l to the 

generation at bus i 

PΦ,i Equivalent power injection from phase shifter 

to unit i  

PD,i Power demand at bus i 
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