• 제목/요약/키워드: constitutive

검색결과 2,148건 처리시간 0.027초

Concrete stiffness matrices for membrane elements

  • Hsu, Thomas T.C.
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.599-608
    • /
    • 1997
  • The concrete stiffness matrices of membrane elements used in the finite element analysis of wall-type structures are reviewed and discussed. The behavior of cracked reinforced concrete membrane elements is first described by summarizing the constitutive laws of concrete and steel established for the two softened truss models (the rotating-angle softened-truss model and the fixed-angle softened-truss model). These constitutive laws are then related to the concrete stiffness matrices of the two existing cracking models (the rotating-crack model and the fixed-crack model). In view of the weakness in the existing models, a general model of the matrix is proposed. This general matrix includes two Poisson ratios which are not clearly understood at present. It is proposed that all five material properties in the general matrix should be established by new biaxial tests of panels using proportional loading and strain-control procedures.

Failure Modeling of Bridge Components Subjected to Blast Loading Part I: Strain Rate-Dependent Damage Model for Concrete

  • Wei, Jun;Quintero, Russ;Galati, Nestore;Nanni, Antonio
    • International Journal of Concrete Structures and Materials
    • /
    • 제1권1호
    • /
    • pp.19-28
    • /
    • 2007
  • A dynamic constitutive damage model for reinforced concrete (RC) structures and formulations of blast loading for contact or near-contact charges are considered and adapted from literatures. The model and the formulations are applied to the input parameters needed in commercial finite element method (FEM) codes which is validated by the laboratory blast tests of RC slabs from literature. The results indicate that the dynamic constitutive damage model based on the damage mechanics and the blast loading formulations work well. The framework on the dynamic constitutive damage model and the blast loading equations can therefore be used for the simulation of failure of bridge components in engineering applications.

다짐풍화화강토에 대한 Yasufuku 구성모델의 평가 (Evaluation of YasufukuYs Constitutive Model for Compacted Weathered Granite Soil)

  • 정진섭;이광찬
    • 한국지반공학회논문집
    • /
    • 제15권5호
    • /
    • pp.43-55
    • /
    • 1999
  • 본 연구는 익산다짐풍화 화강토를 사용하여 여러가지 응력경로 시험을 실시하고 관측된 거동을 정확하게 예측할 수 있는 능력으로서 Yasufuku구성모델을 평가하였다. Yasufuku구성모델로 계산된 변형률은 측정치와 대부분 잘 일치하지만 약간의 차이를 나타내기도 하였다. 측정한 변형률과 계산한 변형률 사이에 가장 큰 차이를 보인곳은 증가하는 응력을 갖는 비례하중이 작용할 때 축변형률에 대하여 일어났다. Yasufuku 구성모델은 익산다짐풍화 화강토의 거동을 일정 구속압력하에서 축하중이 작용할 때와 p'-일정하중이 작용할 때 정확하게 추정할 수 있었다.

  • PDF

직교이방 섬유강화 복합재료의 비선형 비등방 경화법칙 (Nonlinear Anisotropic Hardening Laws for Orthotropic Fiber-Reinforced Composites)

  • 김대용;이명규;정관수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.75-78
    • /
    • 2003
  • In order to describe the Bauschinger and transient behavior of orthotropic fiber-reinforced composites, a combined isotropic-kinematic hardening law based on the non-linear kinematic hardening rule was considered here, in particular, based on the Chaboche type law. In this modified constitutive law, the anisotropic evolution of the back-stress was properly accounted for. Also, to represent the orthotropy of composite materials, Hill's 1948 quadratic yield function and the orthotropic elasticity constitutive equations were utilized. Furthermore, the numerical formulation to update the stresses was also developed based on the incremental deformation theory for the boundary value problems. Numerical examples confirmed that the new law based on the anisotropic evolution of the back-stress complies well with the constitutive behavior of highly anisotropic materials such as fiber-reinforced composites.

  • PDF

셀 방법을 이용한 3차원 원형 브레이드 유리 섬유 강화 복합 재료의 구성 방정식 (Constitutive Equations for Three Dimensional Circular Braided Glass Fiber Reinforced Composites Using Cell Modeling Method)

  • 이원오;정관수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.71-74
    • /
    • 2003
  • The cell modeling homogenization method to derive the constitutive equation considering the microstructures of the fiber reinforced composites has been previously developed for composites with simple microstructures such as 2D plane composites and 3D rectangular shaped composites. Here, the method has been further extended for 3D circular braided composites, utilizing B-spline curves to properly describe the more complex geometry of 3D braided composites. For verification purposes, the method has been applied for orthotropic elastic properties of the 3D circular braided glass fiber reinforced composite, in particular for the tensile property. Prepregs of the specimen have been fabricated using the 3D braiding machine through RTM (resin transfer molding) with epoxy as a matrix. Experimentally measured uniaxial tensile properties agreed well with predicted values obtained fer two volume fractions.

  • PDF

열탄소성 구성방정식 적분을 위한 새로운 알고리즘 (A New Algorithm for the Integration of Thermal-Elasto-Plastic Constitutive Equation)

  • 이동욱;신효철
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1455-1464
    • /
    • 1994
  • A new and efficient algorithm for the integration of the thermal-elasto-plastic constitutive equation is proposed. While it falls into the category of the return mapping method, the algorithm adopts the three point approximation of plastic corrector within one time increment step. The results of its application to a von Mises-type thermal-elasto-plastic model with combined hardening and temperature-dependent material properties show that the accurate iso-error maps are obtained for both angular and radial errors. The accuracy achieved is because the predicted stress increment in a single step calculation follows the exact value closely not only at the end of the step but also through the whole path. Also, the comparison of the computational time for the new and other algorithms shows that the new one is very efficient.

치주인대의 비선형 거동을 고려한 하악 견치의 유한요소해석 (Finite Element Analysis of the Mandibular Canine for Nonlinear Deformation of the Periodontal Ligament)

  • 양훈철;김기태;하만희;손우성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.550-557
    • /
    • 2003
  • Hyperelastic constitutive equations for nonlinear deformation of the periodontal ligament were investigated. The parameters in the strain energy potentials were obtained from experimental data for uniaxial and shear responses of the human periodontal ligament. The hyperelastic constitutive equations based on two strain energy potentials was also compared with the linear elastic equation, which is recently reported. The best fitted parameters in the strain energy potentials was applied to finite element program (ABAQUS) to simulate special orthodontic treatment of a mandibular canine.

  • PDF

혼합 금속 분말의 고온 치밀화 거동 (Densification Behavior of Mixed Metal Powders under High Temperature)

  • 조진호;김기태
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.735-742
    • /
    • 2000
  • Densification behaviors of mixed metal powder under high temperature were investigated. Experimental data of mixed copper and tool steel powder with various volume fractions of Cu powder were obtained under hot isostatic pressing and hot pressing. By mixing the creep potentials of McMeeking and co-workers and of Abouaf and co-workers originally for pure powder, the mixed creep potentials with various volume fractions of Cu powder were employed in the constitutive models. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data for densification of mixed powder under hot isostatic pressing and hot pressing. Finite element calculations by using the creep potentials of Abouaf and co-workers agreed reasonably well with experimental data, however, those by McMeeking and co-workers underestimate experimental data as observed in the case of pure metal powders.

형상기억합금을 이용한 3 차원 비선형 트러스 지능작동기 해석 (Analysis of 3-D non-linear truss smart actuator using SMA)

  • 양성필;김상헌;리녕학;류정현;조맹효
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.557-561
    • /
    • 2008
  • Shape memory alloys (SMA) have interesting features which are the superelastic effect (SE), shape memory effect (SME), two-way SME (TWSME), and so on. These are utilized in actuation factor. The thermo-mechanical constitutive equations of SMA proposed by Lagoudas et al. were employed in the present study for simulating SMA truss structures. The constitutive equation includes the necessary internal variables to account for the material transformations and is utilized in the non-linear finite element procedure of three dimensional truss structures that composed SMA bar (wholly or partially). In this study, we observed which element should be actuated to get a desired shape (actuation shape) from computational analysis. To reach this goal, we apply SMA constitutive equation to non-linear finite element formulation. And then, we simulate two-way shape memory effect as well as superelastic effect of various three dimensional truss using SMA.

  • PDF

On the theory of curved anisotropic plate

  • Chiang, Yih-Cherng
    • Structural Engineering and Mechanics
    • /
    • 제22권6호
    • /
    • pp.741-759
    • /
    • 2006
  • A general theory which describes the elastic response of a curved anisotropic plate subjected to stretching and bending will be developed by considering the nonlinear effect that reflecting the non-flat geometry of the structure. By applying a newly derived $6{\times}6$ matrix constitutive relation between force resultants, moment resultants, mid-plane strains and deformed curvatures, the governing differential equations for a curved anisotropic plate is developed in the usual manner, namely, by consideration of the constitutive relation and equilibrium equations. Solutions are obtained for simply-supported boundary conditions and compared to corresponding solutions that neglecting the nonlinear effect in the analysis. The comparisons indicate that the nonlinear terms in the equations that caused by the curvature of the structure is crucial for the curved plate analysis. Under certain curved plate geometries the unreasonable results will be induced by neglecting the nonlinear effect in the analysis.