• 제목/요약/키워드: constant contact angle

검색결과 67건 처리시간 0.025초

다양한 습윤성 표면 위에서의 액적 증발 (Droplet Evaporation on Surf aces of Various Wettabilities)

  • 송현수;이용구;진송완;김호영;유정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.662-665
    • /
    • 2008
  • We experimentally investigate the evaporation characteristics of water droplet on surfaces of various wettabilities in the range of contact angle from 30$^{circ}$ to 150$^{circ}$. When a liquid droplet on a solid surface evaporates, the contact angle generally decreases with time and the evaporation rate varies with the droplet geometry such as the contact angle and the radius of curvature. Experimental data on the contact angle as a function of the droplet volume obtained by digital image analysis techniques cannot be explained by the existing theories. By measuring the temporal evolutions of the droplet radius and contact angle, we find the qualitative difference between the evaporation patterns on the hydrophilic surfaces where the contact radius remains constant initially and those on the superhydrophobic surfaces where the contact angle remains constant. Also, the evaporation rate is observed to depend on the surface material although the currently available models assume that the rate is solely determined by the droplet geometry. Despite the fact that the theory to explain this dependence on the surface remains to be pursued by the future work, we give the empirical relations that can be used to predict the droplet volume evolution for each surface. It is expected that the present study will contribute to interpreting the effect of droplet geometry on the evaporation.

  • PDF

CONTACT PRESSURE DISTRIBUTION OF RADIAL TIRE IN MOTION WITH CAMBER ANGLE

  • 김석남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.387-394
    • /
    • 2000
  • Theoretical and experimental study is conducted on the contact pressure distribution of a radial tire in motion under various camber angles. Tire construction is modelled by a spring bedded elastic ring, consisted of sidewall springs and a composite belt ring. The contact area is assumed to be a trapezoidal shape varying with camber angles and weighted load. The basic equation in a quasi-static form is derived for the deformation of a running belt with a constant velocity by the aid of Lagrange-Euler transformation. Galerkin's method and stepwise calculation are applied for solving the basic equation and the mechanical boundary condition along both sides of the contact belt part subjected to shearing forces transmitted from the sidewall spring. Experimental results on the contact pressure, measured by pressure sensors embedded in the surface of the drum tester, correspond well with the calculated ones for the test tire under various camber angles, running velocities and weighted loads. These results indicate that a buckling phenomenon of the contact belt in the widthwise direction occurs due to the effect of camber angle.

  • PDF

접촉각 측정 원리를 이용한 새로운 사이즈도 측정기 (제1보) -자동 접촉각 측정 원리의 개발 - (Development of a Novel System for Measuring Sizing Degree Based on Contact Angle(I) - Development of a Novel Principle for Automatic Measurement of Contact Angle -)

  • 이찬용;김철환;최경민;박종열;권오철
    • 펄프종이기술
    • /
    • 제35권3호
    • /
    • pp.43-52
    • /
    • 2003
  • The new principle to measure a sizing degree by a contact angle was developed using an automatic determination of the 3-end point coordinates of the water droplet on a sheet, which could diminish the operator's bias during measurement. A constant amount of water was first placed on a sample sheet by a water dispenser, and then an image of the liquid droplet was captured by a digital camera and then transmitted to a computer. The program measuring for contact angle extracted a liquid contour by Gaussian function combined with a 8-direction chain code. The Euclidean equation was applied to the binary image of the liquid contour in order to measure the diameter of the contour. Finally, the contact angle of the liquid was calculated by using the diameter and the top coordinates. In addition, a surface free energy of the sample sheet and an elapsed time taken up to the complete absorption into the sheet were simultaneously measured with the contact angle.

원자적으로 균일한 평판 위에서 움직이는 물 액적에 대한 분자동역학 시뮬레이션 (A Molecular Dynamics Simulation for the Moving Water Droplet on Atomistically Smooth Solid Surface)

  • 홍승도;하만영
    • 대한기계학회논문집B
    • /
    • 제33권8호
    • /
    • pp.559-564
    • /
    • 2009
  • The variation in the shape of water droplet moving on atomistically smooth solid surface in the presence of a constant body force is simulated using molecular dynamics simulation. We investigated how the advancing and receding contact angle of the moving water droplet changes on a solid surface having various characteristic energies. From the MD simulation results, we obtained the density profile defined as the number of water molecules at a given position. Then, assuming the water droplet periphery to be a circle, we calculated the contact angles by using a nonlinear fitting of the half-density contour line. The present simulation clearly shows the different profile of the advancing and receding contact angle for these three different interaction potential between the water droplet and the solid surface.

고분자전해질막 연료전지의 공기유로 내에서의 다중 액적 거동에 대한 수치적 연구 (NUMERICAL STUDY OF MULTIPLE DROPLET DYNAMICS IN A PEMFC AIR FLOW CHANNEL)

  • 최지영;손기헌
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.159-164
    • /
    • 2009
  • The water droplet motion and the interaction between the droplets in a PEMFC air flow channel with multiple pores, through which water emerges, is studied numerically by solving the equations governing the conservation of mass and momentum. The liquid-gas interface is tracked by a level set method which is based on a sharp-interface representation for accurately imposing the matching conditions at the interface. The method is modified to implement the contact angle conditions on the walls and pores. The dynamic interaction between the droplets growing on multiple pores while keeping the total water flow rate through pores constant is investigated by conducting the computations until the droplet motion exhibits a periodic pattern. The numerical results show that the droplet merging caused by increasing the number of pores is not effective for water removal and that the contact angle of channel wall strongly affects water management in the PEMFC air flow channel.

  • PDF

전리수를 이용한 반도체 세정 공정 (Electrolyzed Water Cleaning for Semiconductor Manufacturing)

  • 류근걸;김우혁;이윤배;이종권
    • 반도체디스플레이기술학회지
    • /
    • 제2권3호
    • /
    • pp.1-6
    • /
    • 2003
  • In the rapid changes of the semiconductor manufacturing technologies for early 21st century, it may be safely said that a kernel of terms is the size increase of Si wafer and the size decrease of semiconductor devices. As the size of Si wafers increases and semiconductor device is miniaturized, the units of cleaning processes increase. A present cleaning technology is based upon RCA cleaning which consumes vast chemicals and ultra pure water (UPW) and is the high temperature process. Therefore, this technology gives rise to environmental issue. To resolve this matter, candidates of advanced cleaning processes have been studied. One of them is to apply the electrolyzed water. In this work, electrolyzed water cleaning was compared with various chemical cleaning, using Si wafer surfaces by changing cleaning temperature and cleaning time, and especially, concentrating upon the contact angle. It was observed that contact angle on surface treated with Electrolyzed water cleaning was $4.4^{\circ}$ without RCA cleaning. Amine series additive of high pKa (negative logarithm of the acidity constant) was used to observe the property changes of cathode water.

  • PDF

Surface wettability and contact angle analysis by dissipative particle dynamics

  • Lin, Tzung-Han;Shih, Wen-Pin;Chen, Chuin-Shan
    • Interaction and multiscale mechanics
    • /
    • 제5권4호
    • /
    • pp.399-405
    • /
    • 2012
  • A dissipative particle dynamics (DPD) simulation was presented to analyze surface wettability and contact angles of a droplet on a solid platform. The many-body DPD, capable of modeling vapor-liquid coexistence, was used to resolve the vapor-liquid interface of a droplet. We found a constant density inside a droplet with a transition along the droplet boundary where the density decreased rapidly. The contact angle of a droplet was extracted from the isosurfaces of the density generated by the marching cube and a spline interpolation of 2D cutting planes of the isosurfaces. A wide range of contact angles from $55^{\circ}$ to $165^{\circ}$ predicted by the normalized parameter ($|A_{SL}|/B_{SL}$) were reported. Droplet with the parameters $|A_{SL}|>5.84B{_{SL}}^{0.297}$ was found to be hydrophilic. If $|A_{SL}|$ was much smaller than $5.84B{_{SL}}^{0.297}$, the droplet was found to be superhydrophobic.

파이어링 상태의 일정 축 각속도에서 엔진베어링의 마모 해석 - Part II: 저어널베어링 마모 계산 (Wear Analysis of Engine Bearings at Constant Shaft Angular Speed during Firing State - Part II: Calculation of the Wear on Journal Bearings)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제34권4호
    • /
    • pp.146-159
    • /
    • 2018
  • This paper presents a wear analysis procedure for calculating the wear of journal bearings of a four-strokes and four-cylinder engine operating at a constant angular crank shaft speed during firing conditions. To decide whether the lubrication state of a journal bearing is in the possible region of wear scar, we utilize the concept of the centerline average surface roughness to define the most oil film thickness scarring wear (MOFTSW) on two rough surfaces. The wear volume is calculated from the wear depth and wear angle, determined by the magnitude of each film thickness on a set of oil films with thicknesses lower than the MOFTSW at every crank angle. To calculate the wear volume at one contact, the wear range ratio during one cycle is used. The total wear volume is then determined by accumulating the wear volume at every contact. The fractional film defect coefficient, asperity load sharing factor, and modified specific wear rate for the application of the mixed-elasto-hydrodynamic lubrication regime are used. The results of this study show that wear occurs only at the connecting-rod big-end bearing. Thus, simulation results of only the big-end bearing are illustrated and analyzed. It is shown that the wear volume of each wear scar group occurs consecutively as the crank angle changes, resulting in the total accumulated wear volume.