Korean J. Math. 22 (2014), No. 1, pp. 133-138
http://dx.doi.org/10.11568 /kjm.2014.22.1.133

ON THE SYMMETRY OF ANNULAR BRYANT
SURFACE WITH CONSTANT CONTACT ANGLE

SuNG-HO PARK

ABSTRACT. We show that a compact immersed annular Bryant sur-
face in H® meeting two parallel horospheres in constant contact an-
gles is rotational.

1. introduction

Catenoid is the only nonplanar minimal surface of rotation in R3.
Therefore a catenoid meets each plane perpendicular to the axis of ro-
tation in constant contact angle. Conversely, if a compact embedded
minimal or constant mean curvature (cmc) surface in R® meets two par-
allel planes in constant contact angles, then the surface is part of a
catenoid or part of a cmc surface of rotation, i.e., a Delaunay surface.
This can be proved by using the Alexandrov’s moving plane argument
[4], [11] to planes perpendicular to the parallel planes. Recently, Pyo
showed that a compact immersed minimal annulus meeting two parallel
planes in constant contact angles is also part of a catenoid [9]. In the
case of cmc surfaces, the result fails to hold: Wente constructed exam-
ples of immersed constant mean curvature annuli in a slab or in a ball
meeting the boundary planes or the boundary sphere perpendicularly
[12].
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The hyperbolic gauss map of a Bryant surface in H? is meromorphic as
the gauss map of a minimal surface in R? is meromorphic [2]. Morevoer,
the cousin correspondence [5] shows a close relation between minimal
surfaces in R?® and Bryant surfaces in H?: for each simply connected
minimal surface in R?, there exists a differentiable, 27-periodic family
of Bryant surfaces in H?. The cousin of a plane in R? is the associate
surfaces of a horosphere in H?. The cousin of the catenoid is called
the catenoid cousin. In this paper, we generalize Pyo’s result to Bryant
surfaces in H?.

THEOREM 1. Let ¥ be a compact immersed annular Bryant surface
in H? meting two parallel horospheres in constant contact angles. Let f
be the hyperbolic gauss map of X.. If f' does not attain 0 and oo, then
Y. is rotational.

Two horospheres in H? are said to be parallel if they have the same
ideal boundary point.We note that the gauss map of a minimal surface
in a slab in R? cannot attain 0 or oo [3]. But the hyperbolic gauss
map of a catenoid cousin meeting two parallel horospheres can attain 0
or oo [10]. In the embedded surface case, one can use the Alexandrov
reflection argument to prove that a compact embedded Bryant surface
in H® meeting two parallel horospheres in constant contact angles is
rotational.

We use the Bianchi-Calo method which represents a Bryant surface
very simply which is homeomorphic to a region in C [6].

2. Bianchi-Caldo method

We use the upper half space model (R?, dsj,) for H*: R? = {(21, z2, z3)
€ R®: w3 < 0} and ds? = (dz? + dz? + dz?)/22. In this model, horo-
sphere is either a (euclidean) sphere tangent to the {z3 = 0}-plane or a
horizontal plane {x3 = constant}.

Let ¢ : ¥ — H? be an immersed oriented surface. Let v be the unit
normal vector field on ¥. The hyperbolic gauss map f : ¥ — 9 H? re-
lates to p € ¥ the end point on the ideal boundary d,H? of the oriented
normal geodesic starting from p in the direction of v.
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REMARK 1. Geometrically, the hyperbolic gauss map f can be inter-
preted in two ways as follows (the geodesic half sphere and horosphere
are assumed to be located in the direction of v. cf. Figure 1.):

(a) f(p) is the euclidean center on O, H> = C*U {oc} of the geodesic
plane tangent to M at p.

(b) f(p) is the point on O ,H? of the horosphere tangent to M at p.

The following Lemma shows the special feature of the Bryant surfaces
in M [2].

LEMMA 1. A surface ¢ : ¥ — H? has mean curvature one if and only
if the hyperbolic gauss map h : ¥ — C U {oo} is meromorphic.

Instead of the usual Bryant representation formula, we use the Bianchi-
Calo method to represent a Bryant surface which is homeomorphic to a
region in C [6]. Let f = f(z) be a holomorphic map defined in a region
Q C C, and let

> 2
0 Ry = L )

Let Sy C R% be the sphere which is tangent to d.H® at f(z) and
has euclidean radius Ry(;). Note that Sy(.y is a two-parameter family of

spheres. Clearly, 0,,H? is one of the two envelopes of S #(z)- The second
envelope gives a Bryant surface whose gauss map is f [6].

Bianchi-Calo method: In the above situation, the parametrization
2|2 £
|SPRe(f'2) + SR Re (1))
2+ Re(ff7z) + EEGHER
2|2 £
S PIm(f ) + B I ()2 )
1z l£"2(1+]2]2)
71+ Re(y7f72) + LG
b Vil
[F[2 o+ Re(f'f2) + EEEHER
in terms of f gives a Bryant surface X; in H3. (Here, we use ’ to denote

d/dz.) Moreover, f is the hyperbolic gauss map of ¥ in terms of the
local complex parameter z = x + iy on ).

(2) 71 = Re(f)

(3) xy = Im(f)

(4)
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FIGURE 1. Bianchi-Calo method

REMARK 2. For a given Bryant surface > homeomorphic to a region
in C with hyperbolic gauss map f, the radius Ry of (1) is just the
euclidean radius of the horosphere tangent to O,,H® and Y. Therefore
Yy derived from f by the Bianchi-Calo method coincides with ¥.

We briefly explain ¥. Details can be found in [6]. Let f = f1 + ifa,
and let
X(2) = (A=), fal2). Ry
be the surface of centers of Sy(.). Since ¥ is an envelope of Sy, we
have T),%; = T,Sy(.) at each p € ¥y and for suitable z. Therefore Xy is
given by

(5) f(Z) = X(Z) - Rf(z)V,
where v is the euclidean unit normal of 3 in the direction of X —¢& (cf.
Figure 2). Here we have (for simplicity, we let R = Ry) [6]

1

VS RE ST (2a1, 20, [VR|* — If’\z) :

where
ap = Rny,m - Rfo,y7 Qo = R:Bfl,y - Ryf?,m
and
_ "2 1 2
(6) WRV+UV:(M”+U<WP+Rdﬂﬂa+ulliﬂﬂl>'

Then it is easy to see that
2R

7 =& =R-—Ris=——55"
(7) T3 = &3 Vs VR + |f]?
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3. Proof of the Main result

In the following, the two parallel horospheres under consideration are
assumed to be two horizontal planes II; and II; in Ri. Let > be a
compact immersed annular Bryant surface meeting II; and I, in con-
stant contact angles. Let & : A — H? be the immersion of X, where
A= {(z,y) € R*: Ry < r = y/22+y? < Ry} is an annulus. Let
f:A— O H? = C2U{oo} be the hyperbolic gauss map of . Hereafter
we identify the Bryant surface X; derived from f with Y. Since the
hyperbolic gauss map f is assumed to be bounded, f is holomorphic on
A. Now we prove Theorem 1.

Proof of Theorem 1. The constant contact angle condition implies that
the third component v3 = (|[VR|* — | f'|*)/(IVR]* + | f'|?) of v is constant
on each component of A. Therefore |f'|?/|VR|? is constant on each
component of JA.

Since 0%, lies on horizontal planes, z3 = 2R|f'|*/(|VR*+ |f'|?)
is also constant on each component of JA. From the constancy of
If'1?/IVR]? on OA, it follows that 2R = 2|f'|?/(1 + |z|*) is constant
on each component of JA. Since JA consists of two concentric circles
centered at the origin, |f’| is also constant on each component of JA.
Since |f’| is assumed not to attain 0 and oo, log |f'| is a bounded har-
monic function on A. Since |f’] is constant on each component of JA,
we have log |f'| = alog|z| + b for some real constants a and b. Hence
we have f/'(2) = €2 = Bz% Since f is a single-valued holomorphic
function on A, we have f’(z) = Bz"™ for some integer n.

From (4), we see that

Bz
T3 =
|Bz"|? + B2Re(z" -n - 271 - zZ) +
| Bl|2|"*

(n+ D[22 + 22 (1 +|2]2)

[nBzr—12(1+]2]?) ©
1

Hence x3 is constant on each circle C, = {z : |z| =1}, for Ry <r < Rs.
It follows that the x3-level curves of ¥ are images of C.

From (1), it follows that R is also constant on each circle C, = {z :
2| = r}. We may assume that f(z) = -Z52"*. Hence the image of C,
under f is a circle on d,H?. Since & 7 is one of the envelopes of Sf(.),
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we conclude that £(C,) is a circle on on a horizontal plane. It is clear
that £(C,) are coaxial. Hence X is rotational. O

Finally, we raise the following question.

Let 3 be a compact immersed annular Bryant surface in H® meeting
two parallel horospheres in constant contact angles. Is Y rotational, even
if the derivative of the hyperbolic gauss map attain 0 or oo?
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