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ON THE SYMMETRY OF ANNULAR BRYANT

SURFACE WITH CONSTANT CONTACT ANGLE

Sung-Ho Park

Abstract. We show that a compact immersed annular Bryant sur-
face in H3 meeting two parallel horospheres in constant contact an-
gles is rotational.

1. introduction

Catenoid is the only nonplanar minimal surface of rotation in R3.
Therefore a catenoid meets each plane perpendicular to the axis of ro-
tation in constant contact angle. Conversely, if a compact embedded
minimal or constant mean curvature (cmc) surface in R3 meets two par-
allel planes in constant contact angles, then the surface is part of a
catenoid or part of a cmc surface of rotation, i.e., a Delaunay surface.
This can be proved by using the Alexandrov’s moving plane argument
[4], [11] to planes perpendicular to the parallel planes. Recently, Pyo
showed that a compact immersed minimal annulus meeting two parallel
planes in constant contact angles is also part of a catenoid [9]. In the
case of cmc surfaces, the result fails to hold: Wente constructed exam-
ples of immersed constant mean curvature annuli in a slab or in a ball
meeting the boundary planes or the boundary sphere perpendicularly
[12].
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The hyperbolic gauss map of a Bryant surface in H3 is meromorphic as
the gauss map of a minimal surface in R3 is meromorphic [2]. Morevoer,
the cousin correspondence [5] shows a close relation between minimal
surfaces in R3 and Bryant surfaces in H3: for each simply connected
minimal surface in R3, there exists a differentiable, 2π-periodic family
of Bryant surfaces in H3. The cousin of a plane in R3 is the associate
surfaces of a horosphere in H3. The cousin of the catenoid is called
the catenoid cousin. In this paper, we generalize Pyo’s result to Bryant
surfaces in H3.

Theorem 1. Let Σ be a compact immersed annular Bryant surface
in H3 meting two parallel horospheres in constant contact angles. Let f
be the hyperbolic gauss map of Σ. If f ′ does not attain 0 and ∞, then
Σ is rotational.

Two horospheres in H3 are said to be parallel if they have the same
ideal boundary point.We note that the gauss map of a minimal surface
in a slab in R3 cannot attain 0 or ∞ [3]. But the hyperbolic gauss
map of a catenoid cousin meeting two parallel horospheres can attain 0
or ∞ [10]. In the embedded surface case, one can use the Alexandrov
reflection argument to prove that a compact embedded Bryant surface
in H3 meeting two parallel horospheres in constant contact angles is
rotational.

We use the Bianchi-Calò method which represents a Bryant surface
very simply which is homeomorphic to a region in C [6].

2. Bianchi-Calò method

We use the upper half space model (R3
+, ds

2
h) for H3: R3

+ = {(x1, x2, x3)
∈ R3 : x3 ≤ 0} and ds2h = (dx21 + dx22 + dx23)/x

2
3. In this model, horo-

sphere is either a (euclidean) sphere tangent to the {x3 = 0}-plane or a
horizontal plane {x3 = constant}.

Let ψ : Σ → H3 be an immersed oriented surface. Let ν be the unit
normal vector field on Σ. The hyperbolic gauss map f : Σ → ∂∞H3 re-
lates to p ∈ Σ the end point on the ideal boundary ∂∞H3 of the oriented
normal geodesic starting from p in the direction of ν.
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Remark 1. Geometrically, the hyperbolic gauss map f can be inter-
preted in two ways as follows (the geodesic half sphere and horosphere
are assumed to be located in the direction of ν. cf. Figure 1.):

(a) f(p) is the euclidean center on ∂∞H3 = C2 ∪ {∞} of the geodesic
plane tangent to M at p.

(b) f(p) is the point on ∂∞H3 of the horosphere tangent to M at p.

The following Lemma shows the special feature of the Bryant surfaces
in H3 [2].

Lemma 1. A surface ψ : Σ→ H3 has mean curvature one if and only
if the hyperbolic gauss map h : Σ→ C ∪ {∞} is meromorphic.

Instead of the usual Bryant representation formula, we use the Bianchi-
Calò method to represent a Bryant surface which is homeomorphic to a
region in C [6]. Let f = f(z) be a holomorphic map defined in a region
Ω ⊂ C, and let

Rf(z) =
1 + |z|2

2
|f ′(z)| .(1)

Let Sf(z) ⊂ R3
+ be the sphere which is tangent to ∂∞H3 at f(z) and

has euclidean radius Rf(z). Note that Sf(z) is a two-parameter family of
spheres. Clearly, ∂∞H3 is one of the two envelopes of Sf(z). The second
envelope gives a Bryant surface whose gauss map is f [6].

Bianchi-Calò method: In the above situation, the parametrization

x1 = Re(f)−
|f ′|2Re(f ′z) + 1+|z|2

2
Re
(
(f ′)2f̄ ′′

)
|f ′|2 +Re(f ′f̄ ′′z̄) + |f ′′|2(1+|z|2)

4

(2)

x2 = Im(f)−
|f ′|2Im(f ′z) + 1+|z|2

2
Im
(
(f ′)2f̄ ′′

)
|f ′|2 +Re(f ′f̄ ′′z̄) + |f ′′|2(1+|z|2)

4

(3)

x3 =
|f ′|3

|f ′|2 +Re(f ′f̄ ′′z̄) + |f ′′|2(1+|z|2)
4

(4)

in terms of f gives a Bryant surface Σf in H3. (Here, we use ′ to denote
d/dz.) Moreover, f is the hyperbolic gauss map of Σf in terms of the
local complex parameter z = x+ iy on Ω.
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Figure 1. Bianchi-Calò method

Remark 2. For a given Bryant surface Σ homeomorphic to a region
in C with hyperbolic gauss map f , the radius Rf of (1) is just the
euclidean radius of the horosphere tangent to ∂∞H3 and Σ. Therefore
Σf derived from f by the Bianchi-Calò method coincides with Σ.

We briefly explain Σf . Details can be found in [6]. Let f = f1 + if2,
and let

X(z) =
(
f1(z), f2(z), Rf(z)

)
be the surface of centers of Sf(z). Since Σf is an envelope of Sf(z), we
have TpΣf = TpSf(z) at each p ∈ Σf and for suitable z. Therefore Σf is
given by

ξ(z) = X(z)−Rf(z)ν,(5)

where ν is the euclidean unit normal of Σf in the direction of X − ξ (cf.
Figure 2). Here we have (for simplicity, we let R = Rf ) [6]

ν =
1

|∇R|2 + |f ′|2
(

2α1, 2α2, |∇R|2 − |f ′|2
)
,

where

α1 = Ryf2,x −Rxf2,y, α2 = Rxf1,y −Ryf2,x

and

|∇R|2 + |f ′|2 =
(
|z|2 + 1

)(
|f ′|2 +Re(f ′f̄ ′′z̄) +

|f ′′|2(1 + |z|2)
4

)
.(6)

Then it is easy to see that

x3 = ξ3 = R−Rν3 =
2R|f ′|2

|∇R|2 + |f ′|2
.(7)
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3. Proof of the Main result

In the following, the two parallel horospheres under consideration are
assumed to be two horizontal planes Π1 and Π2 in R3

+. Let Σ be a
compact immersed annular Bryant surface meeting Π1 and Π2 in con-
stant contact angles. Let ξ : A → H3 be the immersion of Σ, where
A = {(x, y) ∈ R2 : R1 ≤ r =

√
x2 + y2 ≤ R2} is an annulus. Let

f : A→ ∂∞H3 = C2∪{∞} be the hyperbolic gauss map of Σ. Hereafter
we identify the Bryant surface Σf derived from f with Σ. Since the
hyperbolic gauss map f is assumed to be bounded, f is holomorphic on
A. Now we prove Theorem 1.

Proof of Theorem 1. The constant contact angle condition implies that
the third component ν3 = (|∇R|2 − |f ′|2)/(|∇R|2 + |f ′|2) of ν is constant
on each component of ∂A. Therefore |f ′|2/|∇R|2 is constant on each
component of ∂A.

Since ∂Σf lies on horizontal planes, x3 = 2R|f ′|2/(|∇R|2 + |f ′|2)
is also constant on each component of ∂A. From the constancy of
|f ′|2/|∇R|2 on ∂A, it follows that 2R = 2|f ′|2/(1 + |z|2) is constant
on each component of ∂A. Since ∂A consists of two concentric circles
centered at the origin, |f ′| is also constant on each component of ∂A.
Since |f ′| is assumed not to attain 0 and ∞, log |f ′| is a bounded har-
monic function on A. Since |f ′| is constant on each component of ∂A,
we have log |f ′| = a log |z| + b for some real constants a and b. Hence
we have f ′(z) = ebza = Bza. Since f is a single-valued holomorphic
function on A, we have f ′(z) = Bzn for some integer n.

From (4), we see that

x3 =
|Bzn|3

|Bzn|2 +B2Re(zn · n · z̄n−1 · z̄) + |nBzn−1|2(1+|z|2)
4

.

=
|B||z|n+2

(n+ 1)|z|2 + n2

4
(1 + |z|2)

Hence x3 is constant on each circle Cr = {z : |z| = r}, for R1 ≤ r ≤ R2.
It follows that the x3-level curves of Σf are images of Cr.

From (1), it follows that R is also constant on each circle Cr = {z :
|z| = r}. We may assume that f(z) = B

n+1
zn+1. Hence the image of Cr

under f is a circle on ∂∞H3. Since Σf is one of the envelopes of Sf(z),
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we conclude that ξ(Cr) is a circle on on a horizontal plane. It is clear
that ξ(Cr) are coaxial. Hence Σf is rotational. �

Finally, we raise the following question.
Let Σ be a compact immersed annular Bryant surface in H3 meeting

two parallel horospheres in constant contact angles. Is Σ rotational, even
if the derivative of the hyperbolic gauss map attain 0 or ∞?
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space using Bianchi-Calò method, Annals of the Braz. Acad. of Sci. 74 (2002)
(1), 19–24; arXiv:math/0110021.

[7] J. McCuan, Symmetry via spherical reflection and spanning drops in a wedge,
Pacific J. Math. 180 (1997) (2), 291–323.

[8] J. C. C. Nitsche, Stationary partitioning of convex bodies, Arch. Rat. Mech.
Anal. 89 (1985), 1–19.

[9] J. Pyo, Minimal annuli with constant contact angle along the planar boundaries,
Geom. Dedicata 146 (1) (2010), 159–164.

[10] W. Rossman and K. Sato, Constant mean curvature surfaces with two ends in
hyperbolic space, Experiment. Math. Volume 7, Issue 2 (1998), 101–119.

[11] J. Serrin, A symmetry problem in potential theory, Arch. Rat. Mech. and Anal.
43 (1971), 304–318.

[12] H. Wente, Tubular capillary surfaces in a convex body. Advances in geometric
analysis and continuum mechanics (Stanford, CA, 1993), 288–298, International
Press, Cambridge, MA, (1995).

Sung-Ho Park
Major in Mathematics
Graduate School of Education
Hankuk University of Foreign Studies
Seoul 130-791, Korea
E-mail : sunghopark@hufs.ac.kr


