Browse > Article
http://dx.doi.org/10.11568/kjm.2014.22.1.133

ON THE SYMMETRY OF ANNULAR BRYANT SURFACE WITH CONSTANT CONTACT ANGLE  

Park, Sung-Ho (Major in Mathematics Graduate School of Education Hankuk University of Foreign Studies)
Publication Information
Korean Journal of Mathematics / v.22, no.1, 2014 , pp. 133-138 More about this Journal
Abstract
We show that a compact immersed annular Bryant surface in $\mathbb{H}^3$ meeting two parallel horospheres in constant contact an gles is rotational.
Keywords
Bryant Surface; Hyperbolic space; Capillarity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Hopf, Differential Geometry in the large, Springer, Berlin, (1989).
2 H. B. Lawson, Complete Minimal Surfaces in ${\mathbb{S}}^3$, Ann. of Math. 2nd Ser. 92 (3) (1970), 335-374.   DOI
3 L. Lima and P. Roitman, Constant mean curvature one surfaces in hyperbolic space using Bianchi-Calo method, Annals of the Braz. Acad. of Sci. 74 (2002) (1), 19-24; arXiv:math/0110021.   DOI
4 J. McCuan, Symmetry via spherical reflection and spanning drops in a wedge, Pacific J. Math. 180 (1997) (2), 291-323.   DOI
5 J. C. C. Nitsche, Stationary partitioning of convex bodies, Arch. Rat. Mech. Anal. 89 (1985), 1-19.   DOI
6 J. Pyo, Minimal annuli with constant contact angle along the planar boundaries, Geom. Dedicata 146 (1) (2010), 159-164.   DOI
7 W. Rossman and K. Sato, Constant mean curvature surfaces with two ends in hyperbolic space, Experiment. Math. Volume 7, Issue 2 (1998), 101-119.   DOI
8 J. Serrin, A symmetry problem in potential theory, Arch. Rat. Mech. and Anal. 43 (1971), 304-318.
9 H. Wente, Tubular capillary surfaces in a convex body. Advances in geometric analysis and continuum mechanics (Stanford, CA, 1993), 288-298, International Press, Cambridge, MA, (1995).
10 A. D. Alexandrov, Uniqueness theorems for surfaces in the large V, Amer. Math. Soc. Transl. 21 (1962), 412-416.
11 R. Bryant, Surfaces with constant mean curvature one in hyperbolic space, Asterisque 154-155: 321-347.
12 Y. Fang, Lectures on minimal surfaces in ${\mathbb{R}}^3$, Center for Mathematics and Its applications, Australian National University, (1996).