DOI QR코드

DOI QR Code

ON THE SYMMETRY OF ANNULAR BRYANT SURFACE WITH CONSTANT CONTACT ANGLE

  • Park, Sung-Ho (Major in Mathematics Graduate School of Education Hankuk University of Foreign Studies)
  • Received : 2013.11.12
  • Accepted : 2014.03.17
  • Published : 2014.03.30

Abstract

We show that a compact immersed annular Bryant surface in $\mathbb{H}^3$ meeting two parallel horospheres in constant contact an gles is rotational.

Keywords

References

  1. A. D. Alexandrov, Uniqueness theorems for surfaces in the large V, Amer. Math. Soc. Transl. 21 (1962), 412-416.
  2. R. Bryant, Surfaces with constant mean curvature one in hyperbolic space, Asterisque 154-155: 321-347.
  3. Y. Fang, Lectures on minimal surfaces in ${\mathbb{R}}^3$, Center for Mathematics and Its applications, Australian National University, (1996).
  4. H. Hopf, Differential Geometry in the large, Springer, Berlin, (1989).
  5. H. B. Lawson, Complete Minimal Surfaces in ${\mathbb{S}}^3$, Ann. of Math. 2nd Ser. 92 (3) (1970), 335-374. https://doi.org/10.2307/1970625
  6. L. Lima and P. Roitman, Constant mean curvature one surfaces in hyperbolic space using Bianchi-Calo method, Annals of the Braz. Acad. of Sci. 74 (2002) (1), 19-24; arXiv:math/0110021. https://doi.org/10.1590/S0001-37652002000100002
  7. J. McCuan, Symmetry via spherical reflection and spanning drops in a wedge, Pacific J. Math. 180 (1997) (2), 291-323. https://doi.org/10.2140/pjm.1997.180.291
  8. J. C. C. Nitsche, Stationary partitioning of convex bodies, Arch. Rat. Mech. Anal. 89 (1985), 1-19. https://doi.org/10.1007/BF00281743
  9. J. Pyo, Minimal annuli with constant contact angle along the planar boundaries, Geom. Dedicata 146 (1) (2010), 159-164. https://doi.org/10.1007/s10711-009-9431-9
  10. W. Rossman and K. Sato, Constant mean curvature surfaces with two ends in hyperbolic space, Experiment. Math. Volume 7, Issue 2 (1998), 101-119. https://doi.org/10.1080/10586458.1998.10504360
  11. J. Serrin, A symmetry problem in potential theory, Arch. Rat. Mech. and Anal. 43 (1971), 304-318.
  12. H. Wente, Tubular capillary surfaces in a convex body. Advances in geometric analysis and continuum mechanics (Stanford, CA, 1993), 288-298, International Press, Cambridge, MA, (1995).