References
- A. D. Alexandrov, Uniqueness theorems for surfaces in the large V, Amer. Math. Soc. Transl. 21 (1962), 412-416.
- R. Bryant, Surfaces with constant mean curvature one in hyperbolic space, Asterisque 154-155: 321-347.
-
Y. Fang, Lectures on minimal surfaces in
${\mathbb{R}}^3$ , Center for Mathematics and Its applications, Australian National University, (1996). - H. Hopf, Differential Geometry in the large, Springer, Berlin, (1989).
-
H. B. Lawson, Complete Minimal Surfaces in
${\mathbb{S}}^3$ , Ann. of Math. 2nd Ser. 92 (3) (1970), 335-374. https://doi.org/10.2307/1970625 - L. Lima and P. Roitman, Constant mean curvature one surfaces in hyperbolic space using Bianchi-Calo method, Annals of the Braz. Acad. of Sci. 74 (2002) (1), 19-24; arXiv:math/0110021. https://doi.org/10.1590/S0001-37652002000100002
- J. McCuan, Symmetry via spherical reflection and spanning drops in a wedge, Pacific J. Math. 180 (1997) (2), 291-323. https://doi.org/10.2140/pjm.1997.180.291
- J. C. C. Nitsche, Stationary partitioning of convex bodies, Arch. Rat. Mech. Anal. 89 (1985), 1-19. https://doi.org/10.1007/BF00281743
- J. Pyo, Minimal annuli with constant contact angle along the planar boundaries, Geom. Dedicata 146 (1) (2010), 159-164. https://doi.org/10.1007/s10711-009-9431-9
- W. Rossman and K. Sato, Constant mean curvature surfaces with two ends in hyperbolic space, Experiment. Math. Volume 7, Issue 2 (1998), 101-119. https://doi.org/10.1080/10586458.1998.10504360
- J. Serrin, A symmetry problem in potential theory, Arch. Rat. Mech. and Anal. 43 (1971), 304-318.
- H. Wente, Tubular capillary surfaces in a convex body. Advances in geometric analysis and continuum mechanics (Stanford, CA, 1993), 288-298, International Press, Cambridge, MA, (1995).