• Title/Summary/Keyword: constant Q-sectional curvature

Search Result 4, Processing Time 0.016 seconds

CERTAIN CLASS OF QR-SUBMANIFOLDS OF MAXIMAL QR-DIMENSION IN QUATERNIONIC SPACE FORM

  • Kim, Hyang Sook;Pak, Jin Suk
    • Honam Mathematical Journal
    • /
    • v.35 no.2
    • /
    • pp.147-161
    • /
    • 2013
  • In this paper we determine certain class of $n$-dimensional QR-submanifolds of maximal QR-dimension isometrically immersed in a quaternionic space form, that is, a quaternionic K$\ddot{a}$hler manifold of constant Q-sectional curvature under the conditions (3.1) concerning with the second fundamental form and the induced almost contact 3-structure.

Generic submanifolds of a quaternionic kaehlerian manifold with nonvanishing parallel mean curvature vector

  • Jung, Seoung-Dal;Pak, Jin-Suk
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.339-352
    • /
    • 1994
  • A sumbanifold M of a quaternionic Kaehlerian manifold $\tilde{M}^m$ of real dimension 4m is called a generic submanifold if the normal space N(M) of M is always mapped into the tangent space T(M) under the action of the quaternionic Kaehlerian structure tensors of the ambient manifold at the same time.The purpose of the present paper is to study generic submanifold of quaternionic Kaehlerian manifold of constant Q-sectional curvature with nonvanishing parallel mean curvature vector. In section 1, we state general formulas on generic submanifolds of a quaternionic Kaehlerian manifold of constant Q-sectional curvature. Section 2 is devoted to the study generic submanifolds with nonvanishing parallel mean curvature vector and compute the restricted Laplacian for the second fundamental form in the direction of the mean curvature vector. As applications of those results, in section 3, we prove our main theorems. In this paper, the dimension of a manifold will always indicate its real dimension.

  • PDF

QUATERNIONICALLY PROJECTIVE CORRESPONDENCE ON AN ALMOST QUATERNIONIC STRUCTURE

  • Ki, U-Hang;Pak, Jin-Suk;Yoon, Dae-Won
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.855-867
    • /
    • 1998
  • In the present paper, we introduce the notions of quaternionically planar curves and quaternionically projective transformations to the case of almost quaternionic manifold with symmetric affine connection. Also, we obtain an invariant tensor field under the quaternionically projective transformation, and show that a quaternionic Kahlerian manifold with such a vanishing tensor field is of constant Q-sectional curvature.

  • PDF

REAL n-DIMENSIONAL QR-SUBMANIFOLDS OF MAXIMAL QR-DIMENSION IMMERSED IN QP(n+p)/4

  • Kim, Hyang-Sook;Kwon, Jung-Hwan;Pak, Jin-Suk
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.111-125
    • /
    • 2009
  • The purpose of this paper is to study n-dimensional QR-submanifolds of (p-1) QR-dimension immersed in a quaternionic projective space $QP^{(n+p)/4}$ of constant Q-sectional curvature 4 and especially to determine such submanifolds under the additional condition concerning with shape operator.