• Title/Summary/Keyword: consider factor

Search Result 1,833, Processing Time 0.037 seconds

REMARKS ON FINITE ELEMENT METHODS FOR CORNER SINGULARITIES USING SIF

  • Kim, Seokchan;Kong, Soo Ryun
    • Honam Mathematical Journal
    • /
    • v.38 no.3
    • /
    • pp.661-674
    • /
    • 2016
  • In [15] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities, which is useful for the problem with known stress intensity factor. They consider the Poisson equations with homogeneous Dirichlet boundary condition, compute the finite element solution using standard FEM and use the extraction formula to compute the stress intensity factor, then they pose a PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor, which converges with optimal speed. From the solution we could get accurate solution just by adding the singular part. This approach works for the case when we have the accurate stress intensity factor. In this paper we consider Poisson equations with mixed boundary conditions and show the method depends the accrucy of the stress intensity factor by considering two algorithms.

A FINITE ELEMENT METHOD USING SIF FOR CORNER SINGULARITIES WITH AN NEUMANN BOUNDARY CONDITION

  • Kim, Seokchan;Woo, Gyungsoo
    • East Asian mathematical journal
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • In [8] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities, which is useful for the problem with known stress intensity factor. They consider the Poisson equations with homogeneous Dirichlet boundary condition, compute the finite element solution using standard FEM and use the extraction formula to compute the stress intensity factor, then they pose a PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor, which converges with optimal speed. From the solution they could get accurate solution just by adding the singular part. This approach works for the case when we have the reasonably accurate stress intensity factor. In this paper we consider Poisson equations defined on a domain with a concave corner with Neumann boundary conditions. First we compute the stress intensity factor using the extraction formular, then find the regular part of the solution and the solution.

New Speed Adjustment Factor for Analyzing Level of Service at Multi-Lane Highway (다차로도로의 서비스수준 분석을 위한 속도보정계수 개선에 관한 연구)

  • Kim, Wongil;Kang, Woneui;Noh, Chang-Gyun;Park, Bumjin
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.167-173
    • /
    • 2012
  • PURPOSES : This study is to develop speed correction factor for more realistic Level-of-Service(LOS) at multilane highway. METHODS : In this study, we compared speed difference the degree of speed reductions in actual multilane road conditions with speed reduction considering speed correction factor presented in highway capacity manual using statistical techniques. And also we presents new speed correction factor analyzing collected data at national highway No.1 (Goyang~Wolrung). RESULTS : The result of analyzing and comparing new suggested speed correction factor with speed correction factor in Korea Highway Capacity Manual (KHCM) shows RMSE (Root Mean Square Error) in new speed correction factor (RMSE 1.5) is much lower than existing speed correction factor (RMSE 13.4). New suggested speed correction can be used for analyzing Level-of-Service at multilane highway. And also we suggests improvements for analysis procedure in analyzing Level-of-Service at multilane highway CONCLUSIONS : As a result of comparing differences, we draw the causes that effect the differences in speed and suggest new speed correction factor that consider traffic volumes. It can be more rational because it uses speed correction factor which can consider more realistic traffic conditions, etc.

THE SINGULARITIES FOR BIHARMONIC PROBLEM WITH CORNER SINGULARITIES

  • Woo, Gyungsoo;Kim, Seokchan
    • East Asian mathematical journal
    • /
    • v.36 no.5
    • /
    • pp.583-591
    • /
    • 2020
  • In [8, 9] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with corner singularities, compute the finite element solutions using standard Finite Element Methods and use the extraction formula to compute the stress intensity factor(s), then they posed new PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor(s), which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. The error analysis was given in [5]. In their approaches, the singular functions and the extraction formula which give the stress intensity factor are the basic elements. In this paper we consider the biharmonic problems with the cramped and/or simply supported boundary conditions and get the singular functions and its duals and find properties of them, which are the cornerstones of the approaches of [8, 9, 10].

Impact Factor of High-Speed Railway Bridges from Dynamic Response under KTX Running (고속철도교량의 동적응답에 의한 충격계수 산정)

  • Yoon, Hye-Jin;Chin, Won-Jong;Kwark, Jong-Won;Hwang, Eui-Seung;Kim, Byung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1631-1635
    • /
    • 2011
  • To consider dynamic magnification effect at the static design stage, impact load factor is applied to design load. Current impact load factor adopted EUROCODE without verification while Japan suggested impact load factor including velocity of high-speed train throughout theoretical and experimental studies. On the purpose of evaluate current impact load factor, this study investigated the calculation of impact load factor from dynamic response of running train.

  • PDF

Robust Analysis for Configuration of Redundant Intertial Sensors

  • Yang, Cheol-Kwan;Kim, Jeong-Yong;Shim, Duk-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.116.4-116
    • /
    • 2001
  • We consider a robust configuration problem of inertial sensors for inertial navigation system(INS). Fault detection and isolation(FDI) is necessary to improve reliability of the system. For FDI, there used to be more than three mutually orthogonal sensors and thus we have to consider configuration methods of sensors. Various studies in this area have been done, but the former results did not consider effect of uncertainty(misalignment, scale factor error) to determine the configuration of the sensors. In this paper robust configuration of sensors is proposed through sensitivity analysis. Also total least square(TLS) method ...

  • PDF

Evaluation of Impact Factor of High-Speed Railway Bridges from Dynamic Response under KTX Running (고속철도교량의 동적응답에 의한 충격계수 평가)

  • Yoon, Hye-Jin;Chin, Won-Jong;Kwark, Jong-Won;Hwang, Eui-Seung;Kim, Byung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1636-1640
    • /
    • 2011
  • To consider dynamic magnification effect at the static design stage, impact factor is applied to design load. Current impact factor adopted EUROCODE without domestic verification through theoretical and experimental studies. This study evaluated impact factor of railway bridges from dynamic response under KTX running. Moving Average Method was applied to calculate impact factor. Investigation considering different type of bridges and tracks including velocity was conducted.

  • PDF

FINITE ELEMENT SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATION WITH MULTIPLE CONCAVE CORNERS

  • Kim, Seokchan;Woo, Gyungsoo
    • Honam Mathematical Journal
    • /
    • v.40 no.4
    • /
    • pp.785-794
    • /
    • 2018
  • In [8] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with homogeneous Dirichlet boundary condition with one corner singularity at the origin, and compute the finite element solution using standard FEM and use the extraction formula to compute the stress intensity factor, then pose a PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor, which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. This approach uses the polar coordinate and the cut-off function to control the singularity and the boundary condition. In this paper we consider Poisson equations with multiple singular points, which involves different cut-off functions which might overlaps together and shows the way of cording in FreeFEM++ to control the singular functions and cut-off functions with numerical experiments.

SINGULAR AND DUAL SINGULAR FUNCTIONS FOR PARTIAL DIFFERENTIAL EQUATION WITH AN INPUT FUNCTION IN H1(Ω)

  • Woo, Gyungsoo;Kim, Seokchan
    • East Asian mathematical journal
    • /
    • v.38 no.5
    • /
    • pp.603-610
    • /
    • 2022
  • In [6, 7] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with homogeneous boundary conditions, compute the finite element solutions using standard FEM and use the extraction formula to compute the stress intensity factor(s), then they posed new PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor(s), which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. They considered a partial differential equation with the input function f ∈ L2(Ω). In this paper we consider a PDE with the input function f ∈ H1(Ω) and find the corresponding singular and dual singular functions. We also induce the corresponding extraction formula which are the basic element for the approach.