• Title/Summary/Keyword: connection strength

검색결과 971건 처리시간 0.026초

편심이 고려된 강관-가셋트 접합부의 극한 내력 (A Study on the Ultimate Strength of Tube-Gusset Connection Considering Eccentricity)

  • 김우범
    • 한국강구조학회 논문집
    • /
    • 제13권2호
    • /
    • pp.201-210
    • /
    • 2001
  • 본 연구에서는 편심 축력을 받는 가셋트-강관 접합부의 극한 내력을 파악하기 위하여 실험 및 유한요소해석을 수행하였다. 가셋트-강관 접합부의 내력에 영향을 주는 요소는 강관의 직경, 가셋트판 길이, 축력과 횡력의 비, 횡력에 의한 편심 등으로 이들이 주재의 좌굴내력에 미치는 영향을 정량적으로 파악하여 접합부 강도식을 제안하였다. 특히 횡력에 의한 편심이 주재에 작용할 때 이를 설계식에 반영하기 위하여 횡력을 등가의 모멘트 및 편심 축력으로 대치한 수치 모형을 제시하였다. 결과적으로 접합부의 작용하는 외력을 주주재 축력, 모멘트, 편심 축력으로 분해하고 각 외력에 대한 독립적인 극한내력을 구한후 이들의 상관 관계식을 구함으로써 접합부 극한강도식을 제시하였다.

  • PDF

I형 연결장치를 이용한 전면블록/지오그리드 보강재의 연결강도 평가 (A Study on Connection Strength Evaluation of Wall Facing/Geogrid Using I-type Connection Device)

  • 한중근;홍기권;조삼덕;이광우
    • 한국지반신소재학회논문집
    • /
    • 제8권3호
    • /
    • pp.45-52
    • /
    • 2009
  • 최근 국내에서는 시공성 및 경제성이 우수하고, 수려한 경관을 연출할 수 있는 보강토옹벽의 적용이 급증하고 있는 추세이다. 일반적으로 블록식 보강토옹벽 시공시 전면블록과 보강재 사이의 연결은 블록에 미리 형성시킨 돌기(전단키형 방식) 또는 플라스틱 핀(핀형 방식)을 이용하여 보강재를 블록에 정착시키는 방식으로 이루어지고 있다. 그러나 이와 같은 연결방식은 시공중 보강재에 부분적인 손상의 원인이 되며, 이로 인해 보강토옹벽의 안정성에 문제를 야기시킬 수 있다. 따라서 본 연구에서는 기존 연결방식의 문제점을 해결하고자, 안정성을 보다 높이고 경제성은 기존 방식과 유사한 I형 연결장치를 이용한 전면블록/지오그리드 보강재의 연결방법을 개발하였으며, 현장 적용을 위하여 연결강도 특성을 평가하였다.

  • PDF

불균형 휨모멘트를 받는 플랫 플레이트-기둥 외부접합부의 강도 (Strength of Exterior Flat Plate-Column Connections Subjected to Unbalanced Moment)

  • 최경규;박홍근
    • 콘크리트학회논문집
    • /
    • 제15권3호
    • /
    • pp.470-481
    • /
    • 2003
  • 플랫 플레이트 구조의 외부접합부는 편심전단에 대해 비대칭형의 위험단면을 가지고 있으며, 위험단면의 길이가 내부접합부 보다 작고 중력하중과 횡하중 모두에 의해 편심전단응력이 발생하게 되므로 뚫림전단파괴에 대해 대단히 취약하다. 외부접합부의 거동은 대단히 복잡하며 또한 구조해석에서 사용하고 있는 강도모델이 부적합하기 때문에, 현 설계기준은 실험결과를 정확히 설명하고 있지 못하다. 본 연구에서는 이러한 현 설계기준의 미비점을 보완하기 위하여 슬래브-기둥 외부접합부에 대해 비선형유한요소해석을 수행하였다. 외부접합부에서는 횡하중의 재하방향에 따라 거동 및 최대강도가 상이하며, 해석결과에 근거하여 하중재하방향 별로 외부접합부에 대한 강도모델을 제안하였다. 제안된 강도모델은 실험결과와의 비교를 통해 검증되었다.

Ultimate strength of composite structure with different degrees of shear connection

  • Kim, Sang-Hyo;Jung, Chi-Young;Ahn, Jin-Hee
    • Steel and Composite Structures
    • /
    • 제11권5호
    • /
    • pp.375-390
    • /
    • 2011
  • Composite beam, which combined the material characteristic of the steel and concrete, has been widely used in the construction of various building and bridge system. For the effective application of the composite beam, the composite action on the composite interface between the concrete element and the steel element should be achieved by shear connectors. The behavioral characteristics of composite beam are related with the degree of interaction and the degree of shear connection according to the shear strength and shear stiffness of the stud shear connectors. These two concepts are also affected by the number of installed shear connector and the strength of composite materials. In this study, experimental and analytical evaluations of the degree of shear connection affected by stud diameter were conducted, and the relationship between structural behavior and the degree of shear connection was verified. The very small difference among the ultimate loads of the specimens depending on the change of the degree of connection was possibly because of the dependence of the ultimate load on the characteristic of plastic moment of the composite beam.

RC 슬래브와 SC 벽 접합부의 전단마찰 거동에 관한 실험연구 (An Experimental Study on Shear Friction Behavior of RC Slab and SC(Steel Plate Concrete) Wall Structure with Connection Joint)

  • 이경진;황경민;김우범
    • 한국강구조학회 논문집
    • /
    • 제25권6호
    • /
    • pp.623-634
    • /
    • 2013
  • 본 연구에서는 RC 구조 슬래브와 SC 구조 전단벽이 만나는 접합부의 거동특성을 파악하고 RC구조 슬래브-SC구조 전단벽 이질접합부의 전단마찰내력을 평가하고 KEPIC SNG의 접합면 소요전단강도 기준의 안전율을 평가하기 위해 실험연구를 수행하였다. 연구결과, 접합면의 전단마찰내력은 약 300kN으로 나타났고, 변위가 증가할수록 철근의 내력분담이 증가하게 되며, 상부철근보다는 하부철근의 전단내력 분담율이 높은 것으로 나타났다. 하부철근을 구성한 경우에는 하부철근이 없는 실험체에 비해 40% 이상 전단내력이 증가하는 것으로 나타났다.

플랫 플레이트 내부 접합부의 강도산정모델 (Strength Prediction Model for Flat Plate-Column Connections)

  • 최경규;박홍근;안귀용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.897-902
    • /
    • 2002
  • The failure of flat plate connection is successive failure process accompanying with stress redistribution, hence it is necessary to compute the contributions of each resistance components at ultimate state. In the present study, the interactions of resultant forces at each faces of connection, i.e. shear, bending moment and torsional moment are considered in the assessment of strength of slab. As a result the strength prediction model for connection is made up as combination of bending resistance, shear resistance and torsional resistance. The proposed method is verified by the experimental data and numerical data of continuous slabs.

  • PDF

연성적인 접합부를 가진 프리캐스트 콘크리트 골조건물의 변형수요 (Deformation Demand of the Precast Concrete Frame Buildings with Ductile Connection in Moderate Seismic Regions)

  • 서수연;이리형
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.89-98
    • /
    • 1999
  • This paper evaluates nonlinear response characteristics of precast concrete frame buildings. where plastics hinging occurs in the precast connection. Designs were developed for buildings of 5, 10 and 15 stories in hight for moderate seismic risk regions of the U. S. The responses of the buildings were analyzed using DRAIN-2DX and following Nonlinear static analysis procedure of ATC 19. The main variables of the analyses were the strength and stiffness of the connection. Also, for the analysis, the bi-linear response model, developed and inserted into the DRAIN-2DX program by Shan Shi and D. Fouch, was used. With the results of analysis, the deformation demands of the connection of precast concrete frame buildings are proposed by using equal-dissipated energy capacity. It was shown that the strength of the buildings as well as their displacement capacities decreased with the decrease of either the strength or stiffness in the connections. Therefore such changes also require reductions in the response modification factors for such buildings. However, if the precast concrete frame building has plastic hinging in the connection, and has a more ductile connection than the monolithic frame building, then no reduction in R may be necessary. The deformation demand required of the connection to achieve that condition is evaluated and a simple relation is suggested in the paper.

Experimental study of a pretensioned connection for modular buildings

  • Yu, Yujie;Chen, Zhihua;Chen, Aoyi
    • Steel and Composite Structures
    • /
    • 제31권3호
    • /
    • pp.217-232
    • /
    • 2019
  • Modular steel buildings consist of prefabricated room-sized structural units that are manufactured offsite and installed onsite. The inter-module connections must fulfill the assembly construction requirements and soundly transfer the external loads. This work proposes an innovative assembled connection suitable for modular buildings with concrete-filled steel tube columns. The connection uses pretensioned strands and plugin bars to vertically connect the adjacent modular columns. The moment-transferring performance of this inter-module connection was studied through monotonic and cyclic loading tests. The results showed that because of the assembly construction, the connected sections were separated under lateral bending, and the prestressed inter-module connection performed as a weak semirigid connection. The moment strength at the early loading stage originated primarily from the contact bonding mechanism with the infilled concrete, and the postyield strength depended mainly on the tensioned strands. The connection displayed a self-centering-like behavior that the induced deformation was reversed during unloading. The energy dissipation originated primarily from frictional slipping of the plugin bars and steel strands. The moment transferring ability was closely related to the section dimension and the arrangements of the plugin bars and steel strands. A simplified strength calculation and evaluation method was also proposed, and the effectiveness was validated with the test data.

Bearing Strength of Glass Fiber Reinforced Glulam Bolted Connection

  • Kim, Keon-ho;Hong, Soon-il
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권5호
    • /
    • pp.652-660
    • /
    • 2015
  • To study the bearing characteristics of glass fiber reinforced glulam for structural design, bearing strength tests were performed. Bearing loads were applied in the direction parallel to the grains, and the holes were prepared in such a way that the bolts would bear and support all the layers. The yield bearing strengths of the glass fiber reinforced glulam were found to be similar to those of the non-reinforced glulam, and were almost constant regardless of increases in bolt diameter. The ratio of the experimental yield bearing strength to the estimated bearing strength according to the suggested equation of the Korea Building Code and National Design Specification was 0.91~1.03. For the non-reinforced glulam and the sheet glass fiber reinforced plastic glulam, the maximum bearing load was measured according to the splitting fracture of specimens under bolt. The textile glass fiber reinforced glulam underwent only an embedding failure caused by the bearing load. The failure mode of reinforced glulam according to bearing load will influence the failure behavior of bolted connection, and estimating the shear yield strength of the bolted connection of the reinforced glulam is necessary, not only by using the bearing strength characteristics but also using the fracture toughness of the reinforced glulam.

Bearing Strength of Hybrid Coupled Shear Wall Connections

  • Park Wan-Shin;Yun Hyun-Do
    • 콘크리트학회논문집
    • /
    • 제17권6호
    • /
    • pp.1065-1074
    • /
    • 2005
  • Due to lack of information, current design methods to calculate bearing strength of connections are tacit about cases in which hybrid coupled walls have connection details of stud bolts and horizontal ties. In this study, analytical study was carried out to develop model for calculating the connections strength of embedded steel section. The bearing stress at failure in the concrete below the embedded steel coupling beam section is related to the concrete compressive strength and the ratio of the width of the embedded steel coupling beam section to the thickness of the shear walls. Experiments were carried out to determine the factors influencing the bearing strength of the connection between steel coupling beam and reinforced concrete shear wall. The test variables included the reinforcement details that confer a ductile behavior in connection between steel coupling beam and shear wall, i. e., the auxiliary stud bolts attached to the steel beam flanges and the transverse ties at the top and the bottom steel beam flanges. In addition, additional test were conducted to verify the strength equations of the connection between steel coupling beam and reinforced concrete shear wall. The results of the proposed equations in this study are in good agreement with both our test results and other test data from the literature.