• Title/Summary/Keyword: connection of science and technology

Search Result 751, Processing Time 0.03 seconds

Financial Resource Allocation for Seoul Metropolitan Railway Transfer Center and Connection Transportation Facility (수도권 철도역 광역환승센터 및 연계시설의 재원분담 방안)

  • Yun, Gyeong Cheol;Kim, Si Gon;Kim, Jin Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.105-110
    • /
    • 2017
  • In this paper, the current financial resource allocation principle and issues are studied in the beginning for the metropolitan transfer centers and connection transport facility. In addition to this, foreign cases for this matter are performed for the USA and Japan. Based on the foreign cases, the optimal subsidy ratio of central government is suggested. For the metropolitan transfer centers, at least 50% of subsidy is required from 30% at present and from "necessary costs" to "total costs." For connection transport facility, 50% for road facility and 70% for railway facility are proposed, which is not supported at all at present. As far as connection transport facility are concerned, resources allocation scheme between local governments has also been proposed in the proportional to the length of connection transport facility of each local government.

Japanese-to-Korean Inflected Word Translation Using Connection Relations of Two Neighboring Words (인접 단어들의 접속정보를 이용한 일한 활용어 번역)

  • Kim, Jung-In;Lee, Kang-Hyuk
    • Korean Journal of Cognitive Science
    • /
    • v.15 no.2
    • /
    • pp.33-42
    • /
    • 2004
  • There are many syntactic similarities between Japanese and Korean language. These similarities enable us to build Japanese-Korean translation systems without depending cm sophisticated syntactic analysis and semantic analysis. To further improve translation accuracy, we have been developing a Japanese-Korean translation system using these similarities for several years. However, there still remain some problems with regard to translation of inflected words, processing of multi-translatable words and so on. In this paper, we propose a new method for Japanese-Koran machine translation by using the relationships of two neighboring words. To solve the problems, we investigate the connection rules of auxiliary verb priority. And we design the translation table, which consists of entry tables and connection form tables. for unambiguous words, we can translate a Japanese word to the corresponding Korean word in terms of direct-matching method by consulting the only entry table. Otherwise we have to evaluate the connection value computed from connection form tables and then we can select the most appropriate target word.

  • PDF

Design of a Method for Disassembly Works on Recycle Products

  • Matsumoto, Toshiyuki;Yahata, Yuko;Shida, Keisuke
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.1
    • /
    • pp.66-71
    • /
    • 2009
  • This study proposes a new framework for designing disassembly methods. In recent years, environmental problems have become global issues. Recycling of used products or resources is recognized as a matter of significance since it may help reduce the risk of exhausting natural resources. Considering possible exhaustion of limited natural resources in the near future, reuse of products would gain more environmental significance. As yet, it relies hugely on manual disassembly, which labor cost places burden on the total recycling cost. The purpose of this study is to propose a methodology designing for manual disassembly works, and a creation method of a jig. By focusing on parts' connection and attachment relationship, parts are categorized in 5 categories (parent part, joint key part, attaching key part, child part, and independent part) according to the features that parts possess, and 3 kinds of connection relationships (parent part-joint key part connection, parent part-independent part connection and child part-child part connection) are clarified. Connection relationship and attachment relationship charts have also been created, and utilizing them, disassembly orders are settled, and a disassembly jig is devised. The proposed methodology is also applied to a real product and its work time is improved 42% form 31 to 13 seconds.

A Study on the Shape Selection of Mechanical Fastening for the Repair of Fighter Wing (전투기 날개 수리를 위한 기계적 체결의 형상 선정에 관한 연구)

  • Choi, Dongsu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.467-474
    • /
    • 2021
  • A study on optimal shape selection of a mechanical fastening for the repair of crack defect of ROK Air Force F-5 fighter wing was conducted. The crack defect occurred in the spar of the wing, and the technical manual does not specify the repair method. However, ROK Air Force decided to develop a repair technology for this defect in consideration of various logistic conditions. Three repair shapes for the proper repair were devised and the finite element analysis was performed to examine the structural safety of these three connection members. As a result of the structural safety review, two connection members except one were structurally safe with safety margins over zero because the calculated stress values were at or below the yield strength level. Therefore, two connection members were determined to be able to use for repair under the condition that the aircraft operated within the design limit load. The results of this study would be very useful if the same defect occurs in long-term aircraft operated by the ROK Air Force.

Analysis of Characteristics of Linkage between Science and Technology in U.S. Considering R&D Expenditure (연구개발비규모를 고려한 과학지식의 기술연계 특성 분석 : 미국 사례)

  • Shim, Woo-Jung
    • Journal of Korea Technology Innovation Society
    • /
    • v.15 no.1
    • /
    • pp.47-75
    • /
    • 2012
  • Basic research have contributed to technological growth or economic growth in U.S. Specially recent studies say that universities also contribute to economic development through scientific activities like science research, education, technology transfers. But we can not assure whether scientific knowledge was connected to real technology or economic performance, and it is difficult to figure out the effect of scientific output. "What is the exact performance of scientific knowledge?" It is still obscure. In this context, this paper analyzes characteristics of the linkage of science and technology. Data are U.S. R&D expenditure, scientific articles, citation of articles in U.S. patents by fields and sectors. As a result, university sector has the most weight of the linkage of science and technology. But, in relative connection rate analysis, industrial sector's is stronger than any other sectors. In the field analysis, linkage of science and technology is very strong in Chemistry, Physics, Biological sciences fields. And recently the linkage was increased in the fields of Computer science, Agricultural science, Engineering. Finally, this paper supports funding policy or estimation policy of government to product of scientific knowledge. University sector is still important because it has the most weight of the linkage. Scientific knowledge of industrial sector is also important. The connection rate of industrial science is the strongest in all sectors. And this research classify the R&D type by science fields. Considering the differences of science fields is needed to product science knowledge effectively.

  • PDF

Numerical study on the resonance behavior of submerged floating tunnels with elastic joint

  • Park, Joohyun;Kang, Seok-Jun;Hwang, Hyun-Joong;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.207-218
    • /
    • 2022
  • In submerged floating tunnels (SFTs), a next-generation maritime transportation infrastructure, the tunnel module floats in water due to buoyancy. For the effective and economical use of SFTs, connection with the ground is inevitable, but the stability of the shore connection is weak due to stress concentration caused by the displacement difference between the subsea bored tunnel and the SFT. The use of an elastic joint has been proposed as a solution to solve the stability problem, but it changes the dynamic characteristics of the SFT, such as natural frequency and mode shape. In this study, the finite element method (FEM) was used to simulate the elastic joints in shore connections, assuming that the ground is a hard rock without displacement. In addition, a small-scale model test was performed for FEM model validation. A parametric study was conducted on the resonance behavior such as the natural frequency change and velocity, stress, and reaction force distribution change of the SFT system by varying the joint stiffness under loading conditions of various frequencies and directions. The results indicated that the natural frequency of the SFT system increased as the stiffness of the elastic joint increased, and the risk of resonance was the highest in the low-frequency environment. Moreover, stress concentration was observed in both the SFT and the shore connection when resonance occurred in the vertical mode. The results of this study are expected to be utilized in the process of quantitative research such as designing elastic joints to prevent resonance in the future.

Shearing Strength Properties of Bolted, Drift-Pinned Joints of the Larix Glulam - Effects of Fastener Diameter, Slenderness and End-distance on Strength Properties - (낙엽송 집성재의 Bolt, Drift Pin 접합부의 전단강도 성능 평가 - 접합구 직경, 세장비, 끝면거리가 강도에 미치는 영향 -)

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.69-78
    • /
    • 2008
  • Shearing strength test in tension type was investigated to determine the shear resistance of bolt and drift-pin connection of domestic larix glulam. The specimen was connected with bolt and drift-pin in the inserted plate type, and only bolt in the side plate type. The diameter of bolt and drift-pin used in the experiment are 12, 16 and 20 mm. The hole of bolt was drilled at the end-distance 5 d and 7 d. Tension load was loaded in the direction parallel to grain. The shear resistance was evaluated according to end-distance through this, the yield load was compared with the experimental yield load, using Larsen's formula. The prototype design strength is based on the yield load of end-distance 7 d and the reduction factor of end-distance 5 d was calculated. The results were as follows. 1. The average of maximum load of drift-pin connection was higher by 3~30% at the inserted type than at bolt connection with increasing diameter. In bolt connection, the average of maximum load of the side type was 1.54~2.07 times higher than that of the inserted type. In the same diameter, the average of maximum load of end-distance 7 d was higher by 8~44% than that of 5 d. 2. The bearing stress was 1.16~1.41 times higher at the inserted connection than at drift-pin connection, and 1.37~1.86 times higher at 7 d than at 5 d. Also, when the slenderness ratio was below 7.5 at drift-pin connection and below 6.0 at inserted connection, the lateral capacity was good. 3. The ratio of the experimental yield load and the predicted yield load calculated by Larsen's formula proposed by Larsen was 0.80~1.10 at inserted connection, and 0.75~1.46 at side connection. 4. When the inserted bolt connection was based on the yield load of end-distance 7 d, the reduction factor was 0.89 at 12 mm connection, 0.93 at 16 mm and 0.85 at 20 mm. The reduction factor was 0.89 at 12 mm the inserted drift-pin connection, 0.93 at 16 mm, 0.93 at 20 mm. The reduction factor was 0.79 at the side connection of the 12 mm bolt connection and 0.80 at 16 mm.

An evaluation equation of load capacities for CFT square column-to-beam connections with combined diaphragm

  • Choi, Sung-Mo;Jung, Do-Sub;Kim, Dae-Joong;Kim, Jin-Ho
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.303-320
    • /
    • 2007
  • The objective of this study is to clarify the structural features of members consisting of connection, as a series of the previous study on the CFT column-to-beam tensile connection with combined cross diaphragm. This connection has the merits that the stress is distributed evenly on the beam flange and the diaphragm and the stress concentration is reduced, by improving the stress transfer route and restraining abrupt deformation of diaphragm. The finite element analysis was performed to find out the stress transfer through sleeve which is an important member of the connection with combined cross diaphragm. The length and thickness of sleeve were used as variables for the analysis. As the analysis results, the length and thickness of sleeve didn't influence on the capacity of the connection and played a role of a medium to transfer the stress from the diaphragm to the filled concrete. It is proposed that the appropriate length of sleeve be the same value as the diameter of sleeve and the appropriate ratio of sleeve diameter to sleeve thickness be 20. Two equations for evaluation of the load-carrying capacity of the connection were also proposed through the modification of the evaluation equation suggested in the previous study.

Reformation of Legislation and System for Improving Seoul Metropolitan Railway Transfer Center and Connection Transportation Facility (수도권 광역철도역 환승센터 및 연계시설확충을 위한 법제도 개선방안)

  • Kim, Si Gon;Kim, Ji Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.119-124
    • /
    • 2017
  • In this paper, 18 railway stations in Gyunggi-do are selected as metropolitan transfer centers out of 203 stations based on three elements. They are the number of passengers, the level of connection transport, and the level of relevant plans. For 18 stations the level of service (LOS) is analyzed for connection transport system. As a result, half of them are found to be below LOS "D". In order to maximize the use of those railway stations, a method is proposed to upgrade the level of service to "C" above. Finally, the improvement plans are suggested for two acts. In the Special Act on Metropolitan Traffic Management of the Metropolitan Region, the central government financial support ratio is suggested from 30% to 50%, from "necessary costs" to "total costs." In the Act on National Integrated Transport System Efficiency, 50% for connection road and 70% for connection raiway are suggested.

Topology optimization of the photovoltaic panel connector in high-rise buildings

  • Lu, Xilin;Xu, Jiaqi;Zhang, Hongmei;Wei, Peng
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.465-475
    • /
    • 2017
  • Photovoltaic (PV) panels are used in high-rise buildings to convert solar energy to electricity. Due to the considerable energy consumption of high-rise buildings, applying PV technology is of great significance to energy saving. In the application of PV panels, one of the most important construction issues is the connection of the PV panel with the main structures. One major difficulty of the connection design is that the PV panel connection consists of two separate components with coupling and indeterminate dimension. In this paper, the gap element is employed in these two separated but coupled components, i.e., hook and catch. Topology optimization is applied to optimize and design the cross-section of the PV panel connection. Pareto optimization is conducted to operate the optimization subject to multiple load scenarios. The initial design for the topology optimization is determined by the common design specified by the Technical Code for Glass Curtain Wall Engineering (JGJ 102-2003). Gravity and wind load scenarios are considered for the optimization and numerical analysis. Post analysis is conducted for the optimal design obtained by the topology optimization due to the manufactory requirements. Generally, compared with the conventional design, the optimized connector reduces material use with improved structural characteristics.