DOI QR코드

DOI QR Code

Shearing Strength Properties of Bolted, Drift-Pinned Joints of the Larix Glulam - Effects of Fastener Diameter, Slenderness and End-distance on Strength Properties -

낙엽송 집성재의 Bolt, Drift Pin 접합부의 전단강도 성능 평가 - 접합구 직경, 세장비, 끝면거리가 강도에 미치는 영향 -

  • Kim, Keon-Ho (Department of Wood Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Hong, Soon-Il (Department of Wood Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University)
  • 김건호 (강원대학교 산림환경과학대학 임산공학과) ;
  • 홍순일 (강원대학교 산림환경과학대학 임산공학과)
  • Received : 2007.10.10
  • Accepted : 2008.01.07
  • Published : 2008.01.25

Abstract

Shearing strength test in tension type was investigated to determine the shear resistance of bolt and drift-pin connection of domestic larix glulam. The specimen was connected with bolt and drift-pin in the inserted plate type, and only bolt in the side plate type. The diameter of bolt and drift-pin used in the experiment are 12, 16 and 20 mm. The hole of bolt was drilled at the end-distance 5 d and 7 d. Tension load was loaded in the direction parallel to grain. The shear resistance was evaluated according to end-distance through this, the yield load was compared with the experimental yield load, using Larsen's formula. The prototype design strength is based on the yield load of end-distance 7 d and the reduction factor of end-distance 5 d was calculated. The results were as follows. 1. The average of maximum load of drift-pin connection was higher by 3~30% at the inserted type than at bolt connection with increasing diameter. In bolt connection, the average of maximum load of the side type was 1.54~2.07 times higher than that of the inserted type. In the same diameter, the average of maximum load of end-distance 7 d was higher by 8~44% than that of 5 d. 2. The bearing stress was 1.16~1.41 times higher at the inserted connection than at drift-pin connection, and 1.37~1.86 times higher at 7 d than at 5 d. Also, when the slenderness ratio was below 7.5 at drift-pin connection and below 6.0 at inserted connection, the lateral capacity was good. 3. The ratio of the experimental yield load and the predicted yield load calculated by Larsen's formula proposed by Larsen was 0.80~1.10 at inserted connection, and 0.75~1.46 at side connection. 4. When the inserted bolt connection was based on the yield load of end-distance 7 d, the reduction factor was 0.89 at 12 mm connection, 0.93 at 16 mm and 0.85 at 20 mm. The reduction factor was 0.89 at 12 mm the inserted drift-pin connection, 0.93 at 16 mm, 0.93 at 20 mm. The reduction factor was 0.79 at the side connection of the 12 mm bolt connection and 0.80 at 16 mm.

국내산 낙엽송 집성재 볼트, 드리프트 핀 접합부의 내력성능평가를 위해 인장형 전단강도시험을 실시하였다. 인장형 전단시편은 강판삽입형 볼트, 드리프트 핀 접합부 시편과 강판측재형 볼트접합부시편으로 제작하였다. 실험에 사용된 볼트와 드리프트 핀의 직경은 12, 16, 20 mm였다. 시편의 접합구멍은 끝면거리 5, 7 d로 제작하였고 인장하중은 섬유평행방향으로 가하였다. 끝면거리에 따른 접합부의 내력성능을 검토하고 Larsen의 항복추정식을 통해 항복하중을 실측항복하중과 비교하였다. 설계표준 시 끝면거리 7 d의 항복하중을 기준으로 5 d의 저감계수를 산출하였다. 본 연구의 결과는 다음과 같다. 1. 강판삽입형 접합부에서 드리프트 핀 접합부의 평균최대하중은 직경이 증가함에 따라 볼트 접합부보다 3~30% 정도 크게 나타났다. 볼트 접합부의 경우 강판측재형의 평균최대하중은 강판삽입형보다 1.54~2.07배 크게 나타났다. 동일 직경에서 끝면거리 7 d의 평균최대하중이 5 d보다 8~44% 정도 크게 나타났다. 2. 강판삽입형 접합부의 지압응력은 드리프트 핀 접합부가 볼트보다 1.16~1.41배 더 크게 나타났으며, 7 d가 5 d보다 1.37~1.86배 크게 나타났다. 또한 드리프트 핀 접합부의 세장비는 7.5 이하, 강판삽입형 볼트 접합부의 세장비는 6 이하에서 양호한 내력성능을 보였다. 3. 실측 항복하중과 Larsen이 제안한 항복하중 추정식에 의해 얻어진 항복하중값의 비는 강판삽입형 접합부의 경우 0.80~1.10, 강판측재형 접합부는 0.75~1.46이었다. 4. 끝면거리 7 d의 항복하중을 기준으로 강판삽입형 볼트접합부의 경우 12 mm 접합부의 저감계수(Ke)는 0.89, 16 mm는 0.93, 20 mm는 0.85였다. 강판삽입형 드리프트 핀 접합부의 경우 12 mm는 0.89, 16 mm는 0.93, 20 mm는 0.93이었다. 강판측재형 직경 12 mm 볼트접합부의 저감계수는 0.79, 16 mm는 0.80이었다.

Keywords

Acknowledgement

Supported by : 강원대학교

References

  1. ASTM D 5652-95. 2000. Standard test method for bolted connections in wood and wood-based products.
  2. Komatsu, K. and K.-H. Hwang. 1998. Effects of End-Distance and Edge-Distance on The Stiffness and Strength of Drift-Pin Jointed Bongossi Wood with Steel Plate Inserted. 1998. Mokuzai Gakkaishi. 44(5): 360-367.
  3. Hwang, K.-H. and K. Komatsu. 2003. Shear Strength of Joints Composed of Structural Composite Lumber (SCL) with Inserted Steel Plate and Drift Pin. Mokuzai Gakkaishi. 49(4): 275-286.
  4. Larsen, H. J. 1974. IUFRO-V:646-654.
  5. Soltis, L. A., M. ASCE, F. K. Hubbard, and T. L. Wilkinson. 1986. Bearing Strength of Bolted Timber Joints. Journal of Structural Eng. 112(9): 2141-2154. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:9(2141)
  6. Soltis, L. A. 1994. Bolted Connection Research: Present and Future. Wood Design Focus. 5(2): 3-5.
  7. Kawamoto, N., K. Komatsu, and M. Harada. 1992. Lateral Strengths of Drift-Pin Joints in Perpendicular to The Grain Loadings II. Mokuzai Gakkaishi. 38(12): 1111-1118.
  8. Smith, I. and L. R. J. Whale. 1987. Characteristic Properties of Nailed and Bolted Joints under Short-term Lateral Load. Journal Inst. Wood Sci. 11(2): 60-64.
  9. Soltis, L. A. and T. L. Wilkinson. 1987. FRL General Tech. Rep. FRL-GTR54, FPL:1-21.
  10. Hirai, T. 1982. The Effect of Margins on the Lateral Resistance of Bolted Joints Loaded Parallel to Grain. Mokuzai Gakkaishi. 28(3): 137-142.
  11. Hirai, T. 1991. Comparison of The Lateral Resistances of Bolt Joints and Drift Pin Joints. Mokuzai Gakkaishi. 37(4): 303-308.
  12. Hirai, T. and M. Sawada. 1982. The Effect of Margins on The Lateral Resistances of Bolted Joints Loaded Parallel to Grain. Mokuzai Gakkaishi. 28(3): 137-142.
  13. Wilkinson, T. L. 1992. Strength of Bolted Timber Connections with Steel Side Members. Forest Products Laboratory. July. pp. 1-10.
  14. 川元弘雄, 小松莘平, 金曲弘行. 1992. ドリフトピン接合 部の纎維に直交する方向のせん斷耐力(第1報). 木材學會誌, 38(1): 37-45.