• Title/Summary/Keyword: conjugated trans fatty acid

Search Result 49, Processing Time 0.027 seconds

Effects of Type of Oilseed and Level of Concentrate on Fermentation, Biohydrogenation of Fatty Acids and Conjugated Linoleic Acid Production in a Rumen-Simulated Continuous Culture System (지방급원 형태와 수준에 따른 연속배양장치 내 반추위 발효성상, 지방산의 수소첨가 현상 및 Conjugated Linoleic Acid 생산에 미치는 영향 연구)

  • Choi, N.J.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.617-626
    • /
    • 2003
  • This experiment employed a rumen simulated continuous culture system to examine the possibility of improving the rumen bypass of polyunsaturated fatty acids (PUFA) by using a high proportion of concentrate in the feed, and compared soya and linseed in terms of conjugated linoleic acid (CLA) production. No effect of type of fat source was observed on ruminal fermentation. A high proportion of concentrate (80%) in the feed decreased (P<0.001) vessel pH but increased (P<0.01) ammonia nitrogen, total VFA, acetate, butyrate and valerate concentrations compared with a low proportion (40%). Fat sources (soya vs. linseed) and concentrate ratio in the feed did not affect digestibilities of organic matter (OM), total nitrogen, neutral detergent fiber (NDF) and acid detergent fiber (ADF). Soya increased the flows of trans C18:1, C18:2 n-6 and C18:3 n-3 compared with linseed. The difference in fat source alone did not affect the flow of CLA but this was increased when high levels of soya and linseed were associated with a high proportion of concentrate in the feed. There was no effect of fat source on biohydrogenation of C18:1 n-9 and C18:2 n-6, but biohydrogenation of C18:3 n-3 and total C18 PUFA was higher with the linseed than with the soya treatment. A high proportion of concentrate decreased biohydrogenation of C18:2 n-6, C18:3 n-3 and total C18 PUFA compared with a low proportion.

Accumulation of the Conjugated Linoleic Aacid (CLA) in Tilapia ( Tilapia nilotica) Fed Diets on Various Levels of CLA (CLA (Conjugated linoleic acid) 급이수준에 따른 역돔의 CLA 축적량)

  • CHOI Byeong-Dae;KANG Seok-Joong;HA Young-Lae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.509-514
    • /
    • 2001
  • Effects of conjugated linoleic acid (CLA), known as an effective anticarcinogen in several animal models, on the tilapia were investigated. The CLA was made from safflower oil by alkaline isomerization method. Isomers in CLA such as cis-9, trans-11 and trans-10, cis-12 occupied over $80\%$, and other isomers was below $20\%$. In experiment, 250 fishes (average weight is 32 g) were divided into 15 fishes per five treatment and triplicate group for 8 weeks: control, $1\%$ CLA, $2.5\%$ CLA, $5.0\%$ CLA, and $10\%$ CLA diets. Daily growth rate and feed coefficiency were measured every week. The most effective diet for the growth rate and feed coefficiency of tilapia was $1.0\%$ CLA diet group. Every two weeks, sampled and determined the contents of CLA in the muscle and liver, After 8 weeks, $1.0\%$ and $10.0\%$ of CLA fed group accumulated the CLA as 41.3 and 180.9 mg/g of fat in their muscle respectively, Also, n-9 and n-3 fatty acid (FA) compositions were almost not changed in the muscle and liver. But n-6 fatty acid was changed according to the contents of fed CLA. The $1.0\%$ CLA fed group was shown the highest contents of n-6 FA and the $10.0\%$ CLA group was shown the lowest contents of n-6 FA.

  • PDF

Milk Conjugated Linoleic Acid (CLA) Profile and Metabolic Responses of Dairy Cows Fed with High-temperature-micro-time (HTMT) Treated Diets Containing High Quantity Extruded Soybean (ESB)

  • Lee, H.G.;Hong, Z.S.;Wang, J.H.;Xu, C.X.;Jin, Y.C.;Kim, T.K.;Kim, Y.J.;Song, M.K.;Choi, Yun.-Jaei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1504-1512
    • /
    • 2009
  • A feeding trial was conducted to examine the effect of high-temperature-micro-time (HTMT) processing of diets containing extruded soybean (ESB) in high quantity on milk fat production, metabolic responses, and the formation of conjugated linoleic acid (CLA) and trans-vaccenic acid (TVA). Twenty-one multiparous Holstein cows in mid-lactation were blocked according to milk yield in the previous lactation. Cows within each block were randomly assigned to either normal concentrate or HTMT treated diets containing ESB (7.5% HTMT-ESB and 15% HTMT-ESB). It was hypothesized that the HTMT-ESB would affect the undegradable fatty acids in the rumen and, thus, would modify the fatty acid profile of milk fat. Both 7.5% and 15% HTMT-ESB did not affect milk yield, fat, protein, lactose and solid-not-fat (SNF), but the proportion of cis-9, trans-11 CLA in milk fat was significantly increased by these treatments. Content of TVA in milk fat was not affected by HTMT-ESB. The HTMT-ESB influenced the fatty acid profile in milk fat, but there was little difference between 7.5% and 15% of supplementation. HTMT-ESB feeding significantly decreased the concentration of plasma insulin and glucose, while plasma growth hormone (GH), triglyceride (TG), non-esterified fatty acid (NEFA) and HDLcholesterol were increased by 7.5% and 15% ESB-HTMT supplementation in comparison to the control group (p<0.05). However, no significant difference was observed in plasma LDL-cholesterol, insulin like growth factor (IGF)-1, T3, T4, and leptin concentrations among treatments (p>0.05). The present results showed that cis-9, trans-11 CLA production was increased by HTMT treatment of dietary ESB without reduction of milk fat, and the unchanged milk fat and yield was assumed to be associated with the constant level of thyroid hormones, leptin, and IGF-1.

Variations in Conjugated Linoleic Acid Concentrations in Cows Milk, Depending on Feeding Systems in Different Seasons

  • Zunong, Maimaijiang;Hanada, Masaaki;Aibibula, Yimamu;Okamoto, Meiji;Tanaka, Keiichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.10
    • /
    • pp.1466-1472
    • /
    • 2008
  • Variations in conjugated linoleic acid (CLA) concentrations in Holstein dairy cows milk, depending on feeding systems in different seasons was investigated. Milk samples were collected from Holstein dairy cows, which either grazed for whole days (WG), only daylight hours (TG), or were offered a total mixed ration (TMR) and experienced no grazing (NG), from April to December of 2005. In April, November and December, the cows in TG and WG treatments received grass silage and some concentrate, while from May to October, the cows grazed on temperate pasture. The cows in NG treatment received the TMR throughout the season. The major fatty acid obtained in the pastures was linolenic acid. There was no significant difference in the pasture's linolenic acid concentrations from May to September, but there was a significant decrease in October. However, the linolenic acid concentrations obtained in the pasture were always much higher than those obtained from the TMR. Linoleic acid was also the major fatty acid in the TMR, but these concentrations were higher in the TMR than in the pasture. There was no significant difference in milk cis9trans11CLA (c9t11CLA) concentrations between the three feeding systems while the cows were fed on conserved pasture in April, November and December. Although c9t11CLA concentrations were lower in the TMR, it was found that the cows which grazed in fresh pasture experienced significantly higher concentrations of c9t11CLA in their milk than those which received only TMR. It was also found that cows in the WG treatment experienced higher c9t11CLA concentrations than those in the TG treatment. In the WG and TG treatments, c9t11CLA concentrations were highest in June, after which, they gradually decreased (p<0.01) until October. For the NG treatment, there was no significant change in the concentrations of c9t11CLA (p>0.05) with season. Overall, trans11C18:1 and c9t11CLA were greatly influenced by season, with higher variation in the WG treatment than in the TG treatment and no variation in the NG treatment.

pH Affects the In vitro Formation of cis-9, trans-11 CLA and trans-11 Octadecenoic Acid by Ruminal Bacteria When Incubated with Oilseeds

  • Wang, J.H.;Song, M.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1743-1748
    • /
    • 2003
  • The effect of pH on the fermentation characteristics and the formation of cis-9, trans-11 conjugated linoleic acid (CLA) and trans-11 octadecenoic acid by mixed ruminal bacteria was examined in vitro when incubated with linseed or rapeseed. Concentrate (1%, w/v) with ground linseed (0.6%, w/v) or rapeseed (0.5%, w/v) was added to 600 ml mixed solution of strained rumen fluid with artificial saliva (1:1, v/v), and was incubated anaerobically for 12 h at $39^{\circ}C$. The pH of culture solution was maintained at level close to 4.5, 5.3, 6.1 and 6.9 with 30% $H_2SO_4$ or 30% NaOH solution. pH increment resulted in increases of ammonia and total volatile fatty acid (VFA) concentration in culture solutions containing both oilseeds. Fermentation did not proceeded at pH 4.5. Molar proportion of acetate decreased but that of propionate increased as pH increased when incubated with oilseeds. While the hydrogenating process was very slow at the pH range of 4.5 to 5.3, rapid hydrogenation was found from the culture solutions of pH 6.1 and 6.9 when incubated with linseed or rapeseed. As pH in culture solution of linseed or rapeseed increases proportions of oleic acid (cis-9 $C_{18:1}$) and trans-11 octadecenoic acid increased but those of linoleic acid and linolenic acid decreased. The CLA proportion increased with pH in culture solution containing rapeseed but CLA was mostly not detected from the incubation of linseed.

The In vitro Effects of Nano-encapsulated Conjugated Linoleic Acid on Stability of Conjugated Linoleic Acid and Fermentation Profiles in the Rumen

  • Heo, Wan;Kim, Eun Tae;Cho, Sung Do;Kim, Jun Ho;Kwon, Seong Min;Jeong, Ha Yeon;Ki, Kwang Seok;Yoon, Ho Baek;Ahn, Young Dae;Lee, Sung Sill;Kim, Young Jun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.365-371
    • /
    • 2016
  • This study was aimed to evaluate the stability of conjugated linoleic acids (CLAs) by nano-encapsulation against in vitro ruminal biohydrogenation by microbial enzymatic conversion. CLAs (free fatty acid form of CLA [CLA-FFA], nano-encapsulated CLA-FFA, triglyceride form of CLA [CLA-TG], and nano-encapsulated CLA-TG) were used in the in vitro fermentation experiments. When Butyrivibrio fibrisolvens (B. fibrisolvens) was incubated with CLA-FFAs, the concentrations of cis-9, trans-11 CLA and vaccenic acid (VA) slightly was decreased and increased by nano-encapsulation, respectively. When B. fibrisolvens was incubated with CLA-TG, the concentrations of cis-9, trans-11 CLA and VA decreased, but these were increased when B. fibrisolvens was incubated with nano-encapsulated CLA-TG. The nano-encapsulation was more effective against the in vitro biohydrogenation activity of B.fibrisolvens incubated with CLA-FFA than with CLA-TG. In the in vitro ruminal incubation test, the total gas production and concentration of total volatile fatty acids incubated with nano-encapsulated CLA-FFA and CLA-TG were increased significantly after 24 h incubation (p<0.05). Nano-encapsulated CLA-FFA might, thus, improve the ruminal fermentation characteristics without adverse effects on the incubation process. In addition, nano-encapsulated CLA-FFA increased the population of Fibrobacter succinogenes and decreased the population of B. fibrisolvens population. These results indicate that nano-encapsulation could be applied to enhance CLA levels in ruminants by increasing the stability of CLA without causing adverse effects on ruminal fermentation.

Effects of Lactation Stage and Individual Performance on Milk cis-9, trans-11 Conjugated Linoleic Acids Content in Dairy Cows

  • Wang, T.;Oh, J.J.;Lim, J.N.;Hong, J.E.;Kim, J.H.;Kim, J.H.;Kang, H.S.;Choi, Y.J.;Lee, H.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.2
    • /
    • pp.189-194
    • /
    • 2013
  • The goal of this study was to evaluate the effects of lactation stage and individual performance on milk cis-9, trans-11 conjugated linoleic acid (CLA) content in dairy cows. In experiment 1, the milk cis-9, trans-11 CLA content from dairy cows in early ($0.33{\pm}0.014%$), middle ($0.37{\pm}0.010%$), and late stages ($0.44{\pm}0.020%$) showed significant differences (p<0.05); and the individual contents of the major fatty acids, especially cis-9, trans-11 CLA in cows of the same lactation were also variable. In the second experiment design as a validation test, our results once again showed that the individual contents of cis-9, trans-11 CLA were various, and a difference of about 2-fold (0.55% vs 0.95%) was observed, although the animals were offered same diet. These data demonstrated that lactation stage and individual performance have considerable effects on milk cis-9, trans-11 CLA contents.

Conjugated Linoleic Acid (CLA) Contents in Commercial Yoghurts and Production of CLA by Commercial Dairy Starter Cultures (시판 요구르트 제품 중 Conjugated Linoleic Acid (CLA) 함량 분석 및 상업용 Dairy Starter에 의한 CLA 생산)

  • Lee, Hyo-Ku;Kwon, Yung-Tae;Kang, Hye-Soon;Yoon, Chil-Surk;Jeong, Jae-Hong;Kim, Hyeong-Kook;Kim, In-Hwan;Chung, Soo-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.8
    • /
    • pp.1343-1347
    • /
    • 2004
  • Conjugated linoleic acid (CLA) concentrations of commercial yoghurts and the ability of dairy starter cultures to produce CLA were investigated. The CLA contents of yoghurts were in the range of 4.1~14.8 mg/l00 g. CLA contents in yoghurts depended on the amount of milk used for raw material. Regression test showed positive correlations between CLA concentrations and selected fatty acids (stearic acid, oleic acid, linoleic acid and linolenic acid) of lipids in yoghurts. Among the 67 commercial dairy starter cultures tested, one of Lactobacillus acidophilus, one of Lactobacillus casei and three of Streptococcus thermophilus were found to be capable of converting free linloeic acid to CLA and cis-9, trans-11 octadecadienoic acid presented more than 70% of the total CLA formed. The CLA conversion rate of the screened strains ranged from 6.1% to 8.6% in whole milk for 24 hours at 37$^{\circ}C$.

Conjugated Linoleic Acid as a Key Regulator of Performance, Lipid Metabolism, Development, Stress and Immune Functions, and Gene Expression in Chickens

  • Choi, Yang-Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.448-458
    • /
    • 2009
  • It has been well documented from animal and human studies that conjugated linoleic acid (CLA) has numerous beneficial effects on health. In chickens, CLA exerts many effects on performance ranging from egg quality and yolk lipids to meat quality. Although there are several CLA isomers available, not all CLA isomers have the same incorporation rates into egg yolk: cis-9,trans-11 and trans-10,cis-12 CLA isomers are more favorably deposited into egg yolk than other isomers investigated, but of the two isomers, the former has a higher incorporation rate than the latter. CLA alters the amounts and profiles of lipids in plasma, muscles and liver. Furthermore, increased liver weight was reported in chickens fed dietary CLA. As observed in egg yolk, marked reduction in intramuscular lipids as well as increased protein content was observed in different studies, leading to elevation in protein-to-fat ratio. Inconsistency exists for parameters such as body weight gain, feed intake, feed conversion ratio, egg production rate and mortality, depending upon experimental conditions. One setback is that hard-cooked yolks from CLA-consuming hens have higher firmness as refrigeration time and CLA are increased, perhaps owing to alterations in physico-chemistry of yolk. Another is that CLA can be detrimental to hatchability when provided to breeders: eggs from these breeders have impaired development in embryonic and neonatal stages, and have increased and decreased amounts of saturated fatty acids and monounsaturated fatty acids (MUFAs), respectively. Thus, both problems can be fully resolved if dietary sources rich in MUFAs are provided together with CLA. Emerging evidence suggests that CLA exerts a critical impact on stress and immune functions as it can completely nullify some of the adverse effects produced by immune challenges and reduce mortality in a dose-dependent manner. Finally, CLA is a key regulator of genes that may be responsible for lipid metabolism in chickens. CLA down-regulates both expression of the gene encoding stearoyl-CoA desaturase-1 and its protein activity in the chicken liver while up-regulating mRNA of sterol regulatory element-binding protein-l.

Effects of Feeding Extruded Soybean, Ground Canola Seed and Whole Cottonseed on Ruminal Fermentation, Performance and Milk Fatty Acid Profile in Early Lactation Dairy Cows

  • Chen, P.;Ji, P.;Li, Shengli
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.2
    • /
    • pp.204-213
    • /
    • 2008
  • Four ruminally cannulated Holstein cows averaging 43 days in milk (DIM) were used in a $4{\times}4$ Latin square to determine the effect of feeding extruded soybean, ground canola seed and whole cottonseed on ruminal fermentation and milk fatty acid profile. One hundred and twenty lactating Holstein cows, 58 (${\pm}31$) DIM, were assigned to four treatments in a completely randomized block design to study the effects of the three types of oilseeds on production parameters and milk fatty acid profile. The four diets were a control diet (CON) and three diets in which 10% extruded soybean (ESB), 5% ground canola seed (GCS) and 10% whole cottonseed (WCS) were included, respectively. Diets consisted of concentrate mix, corn silage and Chinese wild rye and were balanced to similar concentrations of CP, NDF and ADF. Ruminal fermentation results showed that ruminal fermentation parameters, dry matter intake and milk yield were not significantly affected by treatments. However, compared with the control, feeding cows with the three oilseed diets reduced C14:0 and C16:0 and elevated C18:0 and C18:1 concentrations in milk, and feeding ESB increased C18:2 and cis9, trans11 conjugated linoleic acid (CLA). Production results showed that feeding ESB tended to increase actual milk yield (30.85 kg/d vs. 29.29 kg/d) and significantly decreased milk fat percentage (3.53% vs. 4.06%) compared with CON. Milk protein (3.41%) and solid non-fat (13.27%) from cows fed WCS were significantly higher than from cows fed CON (3.24% and 12.63%, respectively). Milk urea N concentrations from cows fed the ESB (164.12 mg/L) and GCS (169.91 mg/L) were higher than cows fed CON (132.31 mg/L). However, intake of DM, 4% fat corrected milk, energy corrected milk, milk fat and protein yields, milk lactose percentage and yield, somatic cell count and body condition score were not affected by different treatments. The proportion of medium-chain fatty acid with 14 to 16 C units in milk was greatly decreased in cows fed ESB, GCS and WCS. Feeding ESB increased the concentration in milk of C18:1, C18:2, C18:3 and cis9, trans11-CLA content by 16.67%, 37.36%, 95.24%, 72.22%, respectively, feeding GCS improved C18:0 and C18:1 by 17.41% and 33.28%, respectively, and feeding WCS increased C18:0 by 31.01% compared with feeding CON. Both ruminal fermentation and production trial results indicated that supplementation of extruded soybean, ground canola seed and whole cottonseed could elevate the desirable poly- and monounsaturated fatty acid and decrease the medium chain fatty acid and saturated fatty acid content of milk fat without negative effects on ruminal fermentation and lactation performance.