Browse > Article
http://dx.doi.org/10.5187/JAST.2003.45.4.617

Effects of Type of Oilseed and Level of Concentrate on Fermentation, Biohydrogenation of Fatty Acids and Conjugated Linoleic Acid Production in a Rumen-Simulated Continuous Culture System  

Choi, N.J. (Institute of Grassland and Environmental Research, Plas Gogerddan)
Publication Information
Journal of Animal Science and Technology / v.45, no.4, 2003 , pp. 617-626 More about this Journal
Abstract
This experiment employed a rumen simulated continuous culture system to examine the possibility of improving the rumen bypass of polyunsaturated fatty acids (PUFA) by using a high proportion of concentrate in the feed, and compared soya and linseed in terms of conjugated linoleic acid (CLA) production. No effect of type of fat source was observed on ruminal fermentation. A high proportion of concentrate (80%) in the feed decreased (P<0.001) vessel pH but increased (P<0.01) ammonia nitrogen, total VFA, acetate, butyrate and valerate concentrations compared with a low proportion (40%). Fat sources (soya vs. linseed) and concentrate ratio in the feed did not affect digestibilities of organic matter (OM), total nitrogen, neutral detergent fiber (NDF) and acid detergent fiber (ADF). Soya increased the flows of trans C18:1, C18:2 n-6 and C18:3 n-3 compared with linseed. The difference in fat source alone did not affect the flow of CLA but this was increased when high levels of soya and linseed were associated with a high proportion of concentrate in the feed. There was no effect of fat source on biohydrogenation of C18:1 n-9 and C18:2 n-6, but biohydrogenation of C18:3 n-3 and total C18 PUFA was higher with the linseed than with the soya treatment. A high proportion of concentrate decreased biohydrogenation of C18:2 n-6, C18:3 n-3 and total C18 PUFA compared with a low proportion.
Keywords
Polyunsaturated fatty acids (PUFA); Conjugated linoleic acid (CLA); Biohydrogenation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fotouhi, N. and Jenkins, T. C. 1992. Resistance of fatty acyl amides to degradation and hydrogenation by ruminal microorganisms. J. Dairy Sci. 75:1527-1532.   DOI
2 Galbraith, H. and Miller, T. B. 1973. Effect of metal cations and pH on the antibacterial activity and uptake of long chain fatty acids. J. Appl. Bact. 36:659-675.   DOI
3 Griinari, J. M., Dwyer, D. A., McGuire, M. A., Bauman, D. E., Palmquist, D. L and Nurmela, K. V. V. 1998. Trans-octadecenoic acids and milk fat depression in lactating dairy cows. J. Dairy Sci. 81:1251-1261.   DOI   ScienceOn
4 Harfoot, C. G. 1978. Lipid metabolism in the rumen. Prog. Lipid Res. 17:21-54.   DOI   ScienceOn
5 Harfoot, C. G and Hazlewood, G. P. 1988. Lipid metabolism in the rumen. In : The Rumen Microbial Ecosystem (ed. P. N. Hobson). London, New-York: Elsevier Applied Science. pp.285-322.
6 Hussein, H. S., Merchen, N. R. and Fahey, G. C. 1996. Effects of chemical treatment of whole canola seed on digestion of long-chain fatty acids by steers fed high or low forage diets. J. Dairy Sci. 79:87-97.   DOI   ScienceOn
7 Ip, C., Singh, M., Thompson, H. J. and Scimeca, J. A. 1994. Conjugated linoleic acid suppresses mammary carcinogensis and proliferate activity of the mammary gland in the rat. Cancer Res. 54:1212-1215.
8 Jahreis, G., Fritsche, J. and Steinhart, H. 1997. Conjugated linoleic acid in milk fat - high variation depending on production system. Nutr. Res. 17:1479-1484.   DOI   ScienceOn
9 Jenkins, T. C and Palmquist, D. L. 1984. Effect of fatty acids or calcium soaps on rumen and total nutrient digestibility of dairy rations. J. Dairy Sci. 67:978-986.   DOI
10 Jenkins, T. C. 1993. Lipid metabolism in the rumen. J. Dairy Sci. 76:3851-3863.   DOI
11 Van Nevel, C. J. and Demeyer, D. I. 1996. Effect of pH on biohydrogenation of polyunsaturated fatty acids and their Ca-salts by rumen microorganisms in vitro. Arch. Anim. Nutr. 49:151-158.   DOI   ScienceOn
12 Aldrich, C. G., Merchen, N. R., Drackley, J. K., Jr. Fahey, G. C. and Berger, L. L. 1997. The effects of chemical treatment of whole canola seed on intake, nutrient digestibilities, milk production, and milk fatty acids of Holstein cows. J. Anim. Sci. 75:512-521.   DOI
13 Chalupa, W., Rickabaugh, B., Kronfeld, D. S. and Sklan, D. 1984. Rumen fermentation in vitro as influenced by long chain fatty acids. J. Dairy Sci. 67:1439-1444.   DOI
14 Elizalde, J. C., Aldrich, C. G., LaCount, D. W., Drackley, J. K. and Merchen, N. R. 1999. Ruminal and total tract digestibilities in steers fed diets containing liquefied or prilled saturated fatty acids. J. Anim. Sci. 77:1930-1939.   DOI
15 Enjalbert, F., Nicot, M. C., Vernay, M., Moncoulon, R. and Griess, D. 1994. Effect of different forms of polyunsaturated fatty acids on duodenal and serum fatty acid profiles in sheep. Can. J. Anim. Sci. 74:595-600.   DOI   ScienceOn
16 Enser, M., Hallett, K., Hewett, B., Fursey, G. A. F. and Wood, J. D. 1996. Fatty acid content and composition of English beef, lamb and pork at retail. Meat Sci. 42:443-456.   DOI   ScienceOn
17 Enser, M., Scollan, N. D., Choi, N. J., Kurt, E., Hallett, K. and Wood, J. D. 1999. Effect of dietary lipid on the content of conjugated linoleic acid (CLA) in beef muscle. Anim. Sci. 69:143-146.   DOI
18 Ministry of Agriculture, Fisheries and Food. 1992. Prediction of energy value of compound feeding stuffs for farm animals. Summary of recommendations of a working party sponsored by the Ministry of Agriculture, Fisheries and Food, United Kingdom.
19 Van Soest, P. J., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber and non starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3568-3597.   DOI
20 Wu, Z., Ohajuruka, O. A. and Palmquist, D. L. 1991. Ruminal synthesis, biohydrogenation, and digestibility of fatty acids by dairy cows. J. Dairy Sci. 74:3025-3034.   DOI
21 Scollan, N. D., Choi, N. J., Fisher, A.V., Enser, M. and Wood, J. D. 2001a. Manipulating the fatty acid composition of muscle and adipose tissue in beef cattle. Br. J. Nutr. 85:115-124.   DOI   ScienceOn
22 Mould, F. L., Orskov, E. R. and Mann, S. O. 1983. Associative effects of mixed feeds. I. Effects of type and level of supplementation and the influence of rumen fluid pH on cellulolysis in vivo and dry matter digestion of various roughages. Anim. Feed Sci. Technol. 10:15-30.   DOI   ScienceOn
23 Nocek, J. E. 1997. Bovine acidosis: Implications on laminitis. J. Dairy Sci. 80:1005-1028.   DOI   ScienceOn
24 Palmquist, D. L. and Schanbacher, F. L. 1991. Dietary fat composition influences fatty acid composition of milk fat globule membrane in lactating cows. Lipids. 26:718-722.   DOI
25 Scollan, N. D., Dhanoa, M. S., Choi, N, J., Maeng, W. J., Enser, M. and Wood, J. D . 2001b. Digestion of long chain fatty acids from different feed sources and their effect on the rumen function of steers. J. Agric. Sci., Camb. 136:345-355.
26 Scott, T. W., Bready, P. J., Royal, A. J. and Cook, L. J. 1972. Oil seed supplements for the production of polyunsaturated ruminant milk fat. Search 3:170-171.
27 Simopoulos, A. P. 1988. Diet, exercise and caloric balance. J. Am. Med. Assoc. 260:1953.   DOI
28 Stanton, C., Lawless, F., Kjellmer, G., Harrington, D., Devery, R., Connolly, J. F. and Murphy, J. 1997. Dietary influences on bovine milk cis-9, 11-trans conjugated linoleic acid content. J. Food Sci. 62:1083-1086.   DOI   ScienceOn
29 Jiang, J., Bjoerck, L., Fonden, R. and Emanuelson, M. 1996. Occurrence of conjugated cis-9, trans-11 octadecadienoic acid in bovine milk: Effects of feed and dietary regimen. J. Dairy Sci. 79:435-445.
30 Kalscheur, K. F., Teter, B. B., Piperova, L. S. and Erdman, R. A. 1997a. Effect of dietary forage concentration and buffer addition on duodenal flow of trans-C18:1 fatty acids and milk fat production in dairy cows. J. Dairy Sci. 80:2104-2114.   DOI   ScienceOn
31 Kalscheur, K. F., Teter, B. B., Piperova, L. S. and Erdman, R. A. 1997b. Effect of fat source on duodenal flow of trans-C18:1 fatty acids and milk fat production in dairy cows. J. Dairy Sci. 80:2115-2126.   DOI   ScienceOn
32 Klusmeyer, T. H. and Clark, J. H. 1991. Effects of dietary fat and protein on fatty acid flow to the duodenum and in milk produced by dairy cows. J. Dairy Sci. 74:3055-3067.   DOI
33 Klusmeyer, T. H., Lynch, G. L., Clark, J. H. and Nelson, D. R. 1991. Effects of calcium salts of fatty acids and protein source on ruminal fermentation and nutrient flow to the duodenum of cows. J. Dairy Sci. 74:2206-2219.   DOI
34 Lawes Agricultural Trust, 1990. GENSTAT V mark 2.2. Rothamsted Experimental Station, Harpenden, UK.
35 Maczulak, A. E., Dehority, B. A. and Palmquist, D. L. 1981. Effects of long-chain fatty acids on growth of rumen bacteria. Appl. Environ. Microbiol. 42:856-862.
36 McDougall, E. I. 1948. Studies on ruminant saliva. I. The composition and output of sheep's saliva. Biochem. J. 43:99-109.   DOI
37 Merry, R. J., Smith, R. H. and McAllans, A. B. 1987. Studies of rumen function in an in vitro continuous culture system. Arch. Anim. Nutr. Berlin. 37:475-488.   DOI   ScienceOn
38 Merten, D. R. 1977. Dietary fiber components: relationships to the rate and extent of ruminal digestion. Fed. Proc. 36:187-192.