• Title/Summary/Keyword: conjugated polymers

Search Result 128, Processing Time 0.024 seconds

Highly Efficient Light-Emitting PPV Derivatives Containing Polyhedral Oligomeric Silsesquioxanes (POSSs)

  • Kang, Jong-Min;Cho, Hoon-Je;Eom, Jae-Hoon;Lee, Jeong-Ik;Lee, Sang-Kyu;Lee, Jong-Hee;Cho, Nam-Sung;Shim, Hong-Ku;Hwang, Do-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.667-670
    • /
    • 2007
  • A new series of highly bright and efficient poly(pphenylenevinylene) s (PPV)s based on polyhedral oligomeric silsesquioxanes (POSSs) was synthesized via the Gilch polymerization method. The three POSScontaining PPVs are as follows: POSS05- PPV(containing 5 mol % POSS-appended PPV units), POSS25-PPV(containing 25 mol % POSS-appended PPV units), and POSS100-PPV(containing 100 mol % POSS-appended PPV units; this is the first ${\pi}-conjugated$ polymer composed of 100 mol % POSSsappended repeating units). The POSS-containing PPVs exhibit higher glass transition temperatures $(64-77^{\circ}C)$ than that of MEH-PPV $(58^{\circ}C)$, indicating that electroluminescence (EL) devices fabricated with these polymers should have good thermal stabilities. Light-emitting diodes (LEDs) with the configuration of ITO/PEDOT:PSS/polymer/Ca/Al were fabricated using the novel POSS-containing PPVs. Surprisingly, the luminescence efficiency (0.48 cd/A at $10540\;cd/m^2$) of the binary blend consisting 5 wt % of POSS25-PPV and 95 wt % of MEH-PPV was found to be enhanced by a factor of 6.4 with a maximum brightness of $11010cd/m^2$ (at 14.3 V).

  • PDF

Time-Variant Characteristics of Organic Thin Film Solar Cell Devices on Plastic Substrates (플라스틱 기판에 제작된 유기박막태양전지의 출력특성 경시변화)

  • No, Im-Jun;Lee, Sunwoo;Shin, Paik-Kyun
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.4
    • /
    • pp.211-217
    • /
    • 2013
  • Two types of organic thin film solar cell devices with bulk hetero-junction (BHJ) structure were fabricated on plastic substrates using conjugated polymers of $PCDTBT:PC_{71}BM$ and $PTB7:PC_{71}BM$ blended as active channel layer. Time-variant characteristics of the organic thin film solar cell devices were investigated: short circuit current density ($J_{SC}$); open circuit voltage ($V_{OC}$); ; fill factor (FF); power conversion efficiency (PCE, ŋ). All the performance parameters were degraded by progress of the measurement time, while $V_{OC}$ showed the most drastic decrease with time. Possible factors to cause the time-variant alteration of performance parameters were discussed to be clarified.

Preparation and Properties of Biodegradable Superabsorbent Gels Based on Poly(aspartic acid)s with Amino Acid Pendants (아미노산 곁사슬 치환 폴리아스팔트산계 생분해성 고흡수성 젤의 제조와 물성)

  • Son, Chang-Mo;Jeon, Young-Sil;Kim, Ji-Heung
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.558-564
    • /
    • 2011
  • The biocompatibility and biodegradability of poly(amino acid) make them ideal candidates for many bio-related applications. Poly(aspartic acid), PASP, is one of synthetic water-soluble polymers with proteinlike structure, and has been extensively explored for the potential industrial and biomedical applications due to its biodegradable, biocompatible and pH-responsive properties. In this work, amino acid-conjugated PASPs were prepared by aminolysis reaction onto polysuccinimide (PSI) using ${\gamma}$-aminobutylic acid(GABA) and ${\beta}$-alanine methyl ester and a subsequent hydrolysis process. Their chemical gels were prepared by crosslinking reaction with ethylene glycol diglycidyl ether (EGDE). The hydrogels were investigated for their basic swelling behavior, hydrolytic degradation and morphology. The crosslinked gels showed a responsive swelling behavior, which was dependent on pH and salt concentration in aqueous solution, and relatively fast hydrolytic degradation.

Synthesis and Photovoltaic Properties of New π-conjugated Polymers Based on Benzo[1,2,5]thiadiazole (Benzo[1,2,5]thiadiazole을 기본 골격으로 한 공액고분자의 합성 및 광전변환특성 연구)

  • Bea, Jun Huei;Lim, Gyeong Eun;Kim, Joo Hyun
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.396-401
    • /
    • 2013
  • Alternating copolymers, poly[9-(2-octyl-dodecyl)-9H-carbazole-alt-4,7-di-thiophen-2-yl-benzo[1,2,5]thiadiazole] (PCD20TBT) and poly[9,10-bis-(2-octyl-dodecyloxy)-phenanthrene-alt-4,7-di-thiophen-2-yl-benzo[1,2,5]thiadiazole] (PN40TBT), were synthesized by the Suzuki coupling reaction. The copolymers were soluble in common organic solvents such as chloroform, chlorobenzene, 1,2-dichlorobenzene, tetrahydrofuran and toluene. The maximum absorption wavelength and the band gap of PCD20TBT were 535 nm and 1.75 eV, respectively. The maximum absorption wavelength and the band gap of PN40TBT were 560 nm and 1.97 eV, respectively. The HOMO and the LUMO energy level of PCD20TBT were -5.11 eV and -3.36 eV, respectively. As for PN40TBT, the HOMO and the LUMO energy level of PCD20TBT were -5.31 eV and -3.34 eV, respectively. The polymer solar cells (PSCs) based on the blend of copolymer and PCBM (1 : 2 by weight ratio) were fabricated. The power conversion efficiencies of PSCs based on PCD20TBT and PN40TBT were 0.52% and 0.60%, respectively. The short circuit current density ($J_{SC}$), fill factor (FF) and open circuit voltage ($V_{OC}$) of the device with PCD20TBT were $-1.97mA/cm^2$, 38.2% and 0.69 V. For PN40TBT, the $J_{SC}$, FF, and $V_{OC}$ were $-1.77mA/cm^2$, 42.9%, and 0.79 V, respectively.

Synthesis and Photovoltaic Properties of Alternating Conjugated Polymers Derived from Thiophene-Benzothiadiazole Block and Fluorene/Indenofluorene Units

  • Li, Jianfeng;Tong, Junfeng;Zhang, Peng;Yang, Chunyan;Chen, Dejia;Zhu, Yuancheng;Xia, Yangjun;Fan, Duowang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.505-512
    • /
    • 2014
  • A new donor-accepter-donor-accepter-donor (D-A-D-A-D) type 2,1,3-benzothiadiazole-thiophene-based acceptor unit 2,5-di(4-(5-bromo-4-octylthiophen-2-yl)-2,1,3-benzothiadiazol-7-yl)thiophene ($DTBTTBr_2$) was synthesized. Copolymerized with fluorene and indeno[1,2-b]fluorene electron-rich moieties, two alternating narrow band gap (NBG) copolymers PF-DTBTT and PIF-DTBTT were prepared. And two copolymers exhibit broad and strong absorption in the range of 300-700 nm with optical band gap of about 1.75 eV. The highest occupied molecular orbital (HOMO) energy levels vary between -5.43 and -5.52 eV and the lowest unoccupied molecular orbital (LUMO) energy levels range from -3.64 to -3.77 eV. Potential applications of the copolymers as electron donor material and $PC_{71}BM$ ([6,6]-phenyl-$C_{71}$ butyric acid methyl ester) as electron acceptors were investigated for photovoltaic solar cells (PSCs). Photovoltaic performances based on the blend of PF-DTBTT/$PC_{71}BM$ (w:w; 1:2) and PIF-DTBTT/$PC_{71}BM$ (w:w; 1:2) with devices configuration as ITO/PEDOT: PSS/blend/Ca/Al, show an incident photon-to-current conversion efficiency (IPCE) of 2.34% and 2.56% with the open circuit voltage ($V_{oc}$) of 0.87 V and 0.90 V, short circuit current density ($J_{sc}$) of $6.02mA/cm^2$ and $6.12mA/cm^2$ under an AM1.5 simulator ($100mA/cm^2$). The photocurrent responses exhibit the onset wavelength extending up to 720 nm. These results indicate that the resulted narrow band gap copolymers are viable electron donor materials for polymer solar cells.

Improved Solubility and Characterization of Photovoltaic Properties D/A Copolymers based on Rigid Structure of Phenothiazine-Quinoxaline (Rigid한 Phenothiazine-Quinoxaline D/A 공액 고분자 구조의 용해성 향상 연구 및 유기박막태양전지로의 특성 분석)

  • Seong, Ki-Ho;Yun, Dae-Hee;Park, Yong-Sung
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.415-424
    • /
    • 2014
  • In this study, two kinds of polymer (PPQX-2hdPTZ (P1), POPQX-2hdPTZ (P2)) were synthesised by Suzuki coupling reaction based on phenothiazine derivative as electron-donor and quinoxaline derivative as electron-acceptor. Microwave synthesis workstation was used to shorten the polymerization time and increase the degree of polymerization. The physical, thermal stability, optical and electrochemical properties of the synthesized polymer were confirmed. The thermal stability of two polymers was outstanding as the initial decomposition temperature was $323-328^{\circ}C$. And additional substituted alkoxy chain on P2 showed higher degree of polymerization. An analysis of electrochemical properties, all polymer had similar HOMO energy level values. Device was fabricated by ITO/PEDOT:PSS/active layer/$BaF_2$/Al structure and photovoltaic properties were confirmed. Each device has a different film thickness and the resulting change in PCE was confirmed. As a result the thinner thickness of the film showed a high efficiency ($PCE_{max}:P1=1.0%$, P2 = 1.1%).

Improvement of Charge Carrier Mobility of Organic Field-Effect Transistors through The Surface Energy Control (표면 에너지 제어를 통한 유기 전계 효과 트랜지스터의 전하 이동도 향상)

  • Seokkyu Kim;Kwanghoon Kim;Dongyeong Jeong;Yongchan Jang;Minji Kim;Wonho Lee;Eunho, Lee
    • Journal of Adhesion and Interface
    • /
    • v.24 no.2
    • /
    • pp.64-68
    • /
    • 2023
  • Organic field-effect transistors (OFETs) are attracting attention in the field of next-generation electronic devices, and they can be fabricated on a flexible substrate using an organic semiconductor as a channel layer. In particular, DPP-based semiconducting conjugated polymers are actively used because they have higher charge carrier mobility than other organic semiconductors, but they are still lower than inorganic semiconductors, so various studies are being conducted to improve the charge carrier mobility. In this study, the charge carrier mobility is improved by controlling the surface energy of the substrate by forming self-assembled monolayers (SAMs). As the surface energy of the substrate is controlled by the SAMs, the crystallinity increases, thereby improving the charge carrier mobility by 14 times from 3.57×10-3 cm2V-1s-1 to 5.12×10-2 cm2V-1s-1

Synthesis and Photovoltaic Properties of New π-conjugated Polymers Based on 2,3-dimethyl-5,8-dithiophen-2-yl-quinoxaline (2,3-Dimethyl-5,8-dithiophen-2-yl-quinoxaline을 기본 골격으로 한 새로운 고분자 물질의 합성 및 광전변환특성)

  • Shin, Woong;Park, Jeong Bae;Park, Sang Jun;Jo, Mi Young;Suh, Hongsuk;Kim, Joo Hyun
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • Poly[2,3-dimethyl-5,8-dithiophene-2-yl-quinoxaline-alt-9,9-dihexyl-9H-fluorene] (PFTQT) and poly[2,3-dimethyl-5,8-dithiophen-2-yl-quinoxaline-alt-10-hexyl-10H-phenothiazine (PPTTQT) based on 2,3-dimethyl-5,8-dithiophen-2-yl-quinoxaline weresynthesized by Suzuki coupling reaction. All polymers were soluble in common organic solvents such as chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran (THF) and toluene. The maximum absorption wavelength and band gap of PFTQT were 440 nm and 2.30 eV, and PPTTQT were 445 nm and 2.23 eV, respectively. The HOMO and LUMO energy level of PFTQT were -6.05 and -3.75 eV, and PPTTQT were -5,89 and -3.66 eV, respectively. The organic photovoltaic devices based on the blend of polymer and PCBM (1 : 2 by weight ratio) were fabricated. Efficiencies of devices were 0.24% (PFTQT) and 0.16% (PPTTQT), respectively. The short circuit current density ($J_{sc}$), fill factor (FF), and open circuit voltage ($V_{oc}$) of the device with PFTQT were $0.97mA/cm^2$, 29% and 0.86 V, and the device based on PPTTQT were $0.80mA/cm^2$, 28% and 0.71 V, 31% and 0.71 V, respectively, under air mass (AM) 1.5 G and 1 sun condition ($100mA/cm^2$).