Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.2.505

Synthesis and Photovoltaic Properties of Alternating Conjugated Polymers Derived from Thiophene-Benzothiadiazole Block and Fluorene/Indenofluorene Units  

Li, Jianfeng (Key Laboratory of Optoelectronic Technology and Intelligent Control of Education Ministry, Lanzhou Jiaotong University)
Tong, Junfeng (Key Laboratory of Optoelectronic Technology and Intelligent Control of Education Ministry, Lanzhou Jiaotong University)
Zhang, Peng (Key Laboratory of Optoelectronic Technology and Intelligent Control of Education Ministry, Lanzhou Jiaotong University)
Yang, Chunyan (Key Laboratory of Optoelectronic Technology and Intelligent Control of Education Ministry, Lanzhou Jiaotong University)
Chen, Dejia (School of Chemical and Biological Engineering, Lanzhou Jiaotong University)
Zhu, Yuancheng (School of Life Science and Chemistry, Tianshui Normal University)
Xia, Yangjun (Key Laboratory of Optoelectronic Technology and Intelligent Control of Education Ministry, Lanzhou Jiaotong University)
Fan, Duowang (Key Laboratory of Optoelectronic Technology and Intelligent Control of Education Ministry, Lanzhou Jiaotong University)
Publication Information
Abstract
A new donor-accepter-donor-accepter-donor (D-A-D-A-D) type 2,1,3-benzothiadiazole-thiophene-based acceptor unit 2,5-di(4-(5-bromo-4-octylthiophen-2-yl)-2,1,3-benzothiadiazol-7-yl)thiophene ($DTBTTBr_2$) was synthesized. Copolymerized with fluorene and indeno[1,2-b]fluorene electron-rich moieties, two alternating narrow band gap (NBG) copolymers PF-DTBTT and PIF-DTBTT were prepared. And two copolymers exhibit broad and strong absorption in the range of 300-700 nm with optical band gap of about 1.75 eV. The highest occupied molecular orbital (HOMO) energy levels vary between -5.43 and -5.52 eV and the lowest unoccupied molecular orbital (LUMO) energy levels range from -3.64 to -3.77 eV. Potential applications of the copolymers as electron donor material and $PC_{71}BM$ ([6,6]-phenyl-$C_{71}$ butyric acid methyl ester) as electron acceptors were investigated for photovoltaic solar cells (PSCs). Photovoltaic performances based on the blend of PF-DTBTT/$PC_{71}BM$ (w:w; 1:2) and PIF-DTBTT/$PC_{71}BM$ (w:w; 1:2) with devices configuration as ITO/PEDOT: PSS/blend/Ca/Al, show an incident photon-to-current conversion efficiency (IPCE) of 2.34% and 2.56% with the open circuit voltage ($V_{oc}$) of 0.87 V and 0.90 V, short circuit current density ($J_{sc}$) of $6.02mA/cm^2$ and $6.12mA/cm^2$ under an AM1.5 simulator ($100mA/cm^2$). The photocurrent responses exhibit the onset wavelength extending up to 720 nm. These results indicate that the resulted narrow band gap copolymers are viable electron donor materials for polymer solar cells.
Keywords
Fluorene; Narrow band gap; Indeno[1,2-b]fluorene; Benzothiadiazole; Synthesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dou, L.; You, J.; Yang, J.; Chen, C., He, Y.; Murase, S.; Moriarty, T., Emery, K.; Li, G.; Yang, Y. Nat. Mater. 2012, 6, 180.
2 Li, Y. Acc. Chem. Res. 2012, 45, 723.   DOI   ScienceOn
3 Huo, L.; Hou, J.; Zhang, S.; Chen, H. Y.; Yang, Y. Angew. Chem., Int. Ed. 2010, 49, 1500.   DOI   ScienceOn
4 He, F.; Wang, W.; Chen, W.; Xu, T.; Darling, S. B.; Strzalka, J.; Liu, Y.; Yu, L. J. Am. Chem. Soc. 2011, 133, 3284.   DOI   ScienceOn
5 Wang, B.; Tsang, S. W.; Zhang, W.; Tao, Y.; Wong, M. S. Chem. Commun. 2011, 47, 9471.   DOI   ScienceOn
6 Osaka, I.; Kakara, T.; Takemura, N.; Koganezawa, T.; Takimiya, K. J. Am. Chem. Soc. 2013, 135, 8834.   DOI   ScienceOn
7 Wang, M.; Hu, X.; Liu, P.; Li, W.; Gong, X.; Huang, F.; Cao, Y. J. Am. Chem. Soc. 2011, 133, 9638.   DOI   ScienceOn
8 Svensson, M.; Zhang, F.; Veenstra, S. C.; Verhees, W. J.; Hummelen, J. C.; Kroom, J. M., Inganas, O.; Andersson, M. R. Adv. Mater. 2003, 15, 988.   DOI   ScienceOn
9 Kim, J.; Kim, S. H.; Jung, I. H.; Jeong, E.; Xia, Y.; Cho, S.; Hwang, I. W.; Lee, K.; Suh, H.; Shim, H. K.; Woo, H. Y. J. Mater. Chem. 2002, 12, 2887.   DOI   ScienceOn
10 Blouin, N.; Michaud, A.; Leclerc, M. Adv. Mater. 2007, 19, 2295.   DOI   ScienceOn
11 Zhou, E.; Yamakawa, S.; Zhang, Y.; Tajima, K.; Yang, C.; Hashimoto, K. J. Mater. Chem. 2009, 19, 7730.   DOI   ScienceOn
12 Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Nat. Mater. 2007, 6, 497.   DOI   ScienceOn
13 Chen, Y.; Yu, C.; Fan, Y.; Hung, L.; Chen, C.; Ting, C. Chem. Commun. 2010, 46, 6503.   DOI   ScienceOn
14 Xia, Y.; He, Z.; Tong, J.; Li, B.; Wang, C.; Cao, Y.; Wu, H.; Woo, H.; Fan, D. Macromol. Chem. Phys. 2011, 212, 1193.   DOI   ScienceOn
15 Yilgram, K.; Zupan, M.; Skiles, R. J. Heterocycl. Chem. 1970, 629.
16 Cai, T.; Zhou, Y.; Wang, E.; Hellstroma, S.; Zhang, F.; Xu, S.; Inganas, O.; Andersson, M. R. Sol. Energy Mater. Sol. Cells 2010, 94, 1275.   DOI   ScienceOn
17 Saadeh, H.; Goodson III, T.; Yu, L. Macromolecules 1997, 30, 4608.   DOI
18 Hou, Q.; Xu, Y.; Yang, W.; Yuan, M.; Peng, J.; Cao, Y. J. Mater. Chem. 2002, 12, 2887.   DOI   ScienceOn
19 Jeong, E.; Kim, S. H.; Jung, I. H.; Xia, Y.; Lee, K.; Suh, H.; Shim, H. K.; Woo, H. Y. J. Polym. Sci.: Part A: Polym. Chem. 2009, 47, 3467.   DOI   ScienceOn
20 Samuel, I. D. W.; Rumbles, G.; Collison, C. J. Phys. Rev. B 1995, 52, 11573   DOI   ScienceOn
21 Pope, M.; Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers, 2nd ed.; Oxford University Press: New York, 1999.
22 Hou, J.; Park, M. H.; Zhang, S.; Yao, Y.; Chen, L. M.; Li, J. H.; Yang, Y. Macromolecules 2008, 41, 6012.   DOI   ScienceOn
23 Wang, E.; Wang, L.; Lan, L.; Luo, C.; Zhuang, W.; Peng, J.; Cao, Y. Appl. Phys. Lett. 2008, 92, 033307.   DOI   ScienceOn
24 Huo, L.; Chen, H. Y.; Hou, J.; Chen, T. L.; Yang, Y. Chem. Commun. 2009, 5570.
25 Zhou, E.; Nakamura, M.; Nishizawa, T.; Zhang, Y.; Wei, Q.; Tajima, K.; Yang, C.; Hashimoto, K. Macromolecules 2008, 41, 8302.   DOI   ScienceOn
26 Liang, Y.; Feng, D.; Wu, Y.; Tsai, S. T.; Li, G.; Ray, C.; Yu, L. J. Am. Chem. Soc. 2009, 131, 7792.   DOI   ScienceOn
27 Wu, Y.; Li, Z.; Guo, X.; Fan, H.; Huo, L.; Hou, J. J. Mater. Chem. 2012, 22, 21362.   DOI   ScienceOn
28 Wang, B.; Tsang, S. W.; Zhang, W.; Tao, Y.; Wong, M. S. Chem. Commun. 2011, 47, 9471.   DOI   ScienceOn
29 Huo, L.; Zhang, S.; Guo, X.; Xu, F.; Li, Y.; Hou, J. Angew. Chem., Int. Ed. 2011, 50, 9697.   DOI   ScienceOn
30 Campos, L. M.; Tontcheva, A.; Gunes, S.; Sonmez, G.; Neugebauer, H.; Sariciftci, N. S.; Wudl, F. Chem. Mater. 2005, 17, 4031.   DOI   ScienceOn
31 Zou, Y., Najari, A.; Berrouard, P.; Beaupre, S.; Aich, B. R.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2010, 132, 5330.   DOI   ScienceOn
32 Stalder, R.; Grand, C.; Subbiah, J.; So, F.; Reynolds, J. R. Polym. Chem. 2012, 3, 89.   DOI
33 Hou, J.; Chen, H. Y.; Zhang, S.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2008, 130, 16144.   DOI   ScienceOn
34 Bronstein, H.; Chen, Z.; Ashraf, R. S.; Zhang, W.; Du, J.; Durrant, J. R.; Tuladhar, P. S.; Song, K.; Watkins, S. E.; Geerts, Y.; Wienk, M. M.; Janssen, R. A.; Anthopoulos, J. T.; Sirringhaus, H.; Heeney, M.; McCulloch, I. J. Am. Chem. Soc. 2011, 133, 3272.   DOI   ScienceOn
35 Wu, Y.; Li, Z.; Guo, X.; Fan, H.; Huo, L.; Hou, J. J. Mater. Chem. 2012, 22, 21362.   DOI   ScienceOn
36 Muhlbacher, D.; Scharber, M.; Morana, M.; Zhu, Z.; Waller, D.; Gaudiana, R.; Brabec, C. Adv. Mater. 2006, 18, 2884.   DOI   ScienceOn