• Title/Summary/Keyword: conjugacy map

Search Result 5, Processing Time 0.02 seconds

INVARIANCE OF KNEADING MATRIX UNDER CONJUGACY

  • Gopalakrishna, Chaitanya;Veerapazham, Murugan
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.265-281
    • /
    • 2021
  • In the kneading theory developed by Milnor and Thurston, it is proved that the kneading matrix and the kneading determinant associated with a continuous piecewise monotone map are invariant under orientation-preserving conjugacy. This paper considers the problem for orientation-reversing conjugacy and proves that the former is not an invariant while the latter is. It also presents applications of the result towards the computational complexity of kneading matrices and the classification of maps up to topological conjugacy.

ON DYNAMICS OF A SIXTH-ORDER MULTIPLE-ROOT FINDER FOR NONLINEAR EQUATIONS

  • YOUNG HEE GEUM
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.1
    • /
    • pp.213-221
    • /
    • 2024
  • A family of sixth-order multiple-root solver have been developed and the special case of weight function is investigated. The dynamical analysis of selected iterative schemes with uniparametric polynomial weight function are studied using Möbius conjugacy map applied to the form ((z - A)(z - B))m and the stability surfaces of the strange fixed points for the conjugacy map are displayed. The numerical results are shown through various parameter spaces.

THE CRITICAL PODS OF PLANAR QUADRATIC POLYNOMIAL MAPS OF TOPOLOGICAL DEGREE 2

  • Misong Chang;Sunyang Ko;Chong Gyu Lee;Sang-Min Lee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.659-675
    • /
    • 2023
  • Let K be an algebraically closed field of characteristic 0 and let f be a non-fibered planar quadratic polynomial map of topological degree 2 defined over K. We assume further that the meromorphic extension of f on the projective plane has the unique indeterminacy point. We define the critical pod of f where f sends a critical point to another critical point. By observing the behavior of f at the critical pod, we can determine a good conjugate of f which shows its statue in GIT sense.

VARIOUS SHADOWING PROPERTIES FOR TIME VARYING MAPS

  • Sarkooh, Javad Nazarian
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.481-506
    • /
    • 2022
  • This paper is concerned with the study of various notions of shadowing of dynamical systems induced by a sequence of maps, so-called time varying maps, on a metric space. We define and study the shadowing, h-shadowing, limit shadowing, s-limit shadowing and exponential limit shadowing properties of these dynamical systems. We show that h-shadowing, limit shadowing and s-limit shadowing properties are conjugacy invariant. Also, we investigate the relationships between these notions of shadowing for time varying maps and examine the role that expansivity plays in shadowing properties of such dynamical systems. Specially, we prove some results linking s-limit shadowing property to limit shadowing property, and h-shadowing property to s-limit shadowing and limit shadowing properties. Moreover, under the assumption of expansivity, we show that the shadowing property implies the h-shadowing, s-limit shadowing and limit shadowing properties. Finally, it is proved that the uniformly contracting and uniformly expanding time varying maps exhibit the shadowing, limit shadowing, s-limit shadowing and exponential limit shadowing properties.

PERIODIC SURFACE HOMEOMORPHISMS AND CONTACT STRUCTURES

  • Dheeraj Kulkarni;Kashyap Rajeevsarathy;Kuldeep Saha
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.1-28
    • /
    • 2024
  • In this article, we associate a contact structure to the conjugacy class of a periodic surface homeomorphism, encoded by a combinatorial tuple of integers called a marked data set. In particular, we prove that infinite families of these data sets give rise to Stein fillable contact structures with associated monodromies that do not factor into products to positive Dehn twists. In addition to the above, we give explicit constructions of symplectic fillings for rational open books analogous to Mori's construction for honest open books. We also prove a sufficient condition for the Stein fillability of rational open books analogous to the positivity of monodromy for honest open books due to Giroux and Loi-Piergallini.