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ON DYNAMICS OF A SIXTH-ORDER MULTIPLE-ROOT

FINDER FOR NONLINEAR EQUATIONS†

YOUNG HEE GEUM

Abstract. A family of sixth-order multiple-root solver have been devel-
oped and the special case of weight function is investigated. The dynam-

ical analysis of selected iterative schemes with uniparametric polynomial

weight function are studied using Möbius conjugacy map applied to the
form ((z − A)(z − B))m and the stability surfaces of the strange fixed

points for the conjugacy map are displayed. The numerical results are
shown through various parameter spaces.
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1. Introduction

The problem of finding roots occurs in diverse fields are modeled into nonlin-
ear equations [1, 2]. Researchers are interested in developing efficient iteration
schemes [3, 5, 7, 8, 9, 10] and investigating the dynamics [12, 13, 16, 17, 18] of
higher order method to find the zeros of nonlinear equations. A root α of f(x) =
0 is called a multiple zero with multiplicity m if f (i)(α) = 0, i = 0, 1, 2, · · · ,m−1
and g(m)(α) ̸= 0 [15].

We study the dynamics of a class of sixth-order multiple-zero solvers devel-
oped by Geum-Kim-Neta[11] below:

yn = xn −m · h(xn), h(xn) =
f(xn)
f ′(xn)

,

wn = xn −m ·Af (s) · h(xn), s = ( f(yn)
f(xn)

)
1
m ,

xn+1 = xn −m ·Bf (s, v) · h(xn), v = ( f(wn)
f(xn)

)
1
m ,

(1)
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where Af : C → C is a analytic function in a small neighborhood of O and
Bf : C2 → C is holomorphic in a small neighborhood of (0, 0).

The biparametric family of (1) is selected by

xn+1 = If (xn, λ, η), n = 0, 1, 2, · · · ,
with the iteration function [4, 13, 14, 19]

If (xn, λ, η) = xn −m ·Bf (s, v) · h(xn),

and

Af (s) = 1 + s+ 2s2,
Bf (s, v) = 1 + s+ 2s2 + λs5 + (1 + 2s+ ηs2)v, for λ, η ∈ C.

In this work, we consider one complex parameter η choosing λ = 0.

Definition 1.1. Let l1 : X → X and l2 : Y → Y be the dynamical systems. If
there is a function k1 : X → Y such that k1 ◦ l1 = l2 ◦k1, l1 and l2 are conjugate.
Then the map k1 is called a conjugacy [6].

The primary aim of this paper is to study the complex dynamical analy-
sis on the Riemann sphere by investigating the parameter spaces related with
the free critical points for the uniparametric family of sixth-order multiple-root
finders. Such research from a viewpoint of complex dynamics could restrict
us from treating the real dynamics for real nonlinear equations. However, the
main motivation for investigating the relevant complex dynamics lies in finding
the dynamical behavior of the iterative method via Möbius conjugacy map by
presenting η-parameter spaces.

The outline of the next sections is : the conjugacy maps of selected method
and the stability surfaces are described in Section 2. The complex dynamics
with parameter spaces and conclusion are shown in Section 3.

2. Dynamical analysis

Using conjugacy map M(z) = z−A
z−B considered by Blanchard [6], when applied

to f(z) = ((z −A)(z −B))m, the iterative method If is conjugate to J(z, η) as
follows

J(z, η) = −z6(5 + 4z + z2)Ψ(z)

(1 + 4z + 5z2)p(z)
, (2)

where Ψ(z) = (6 + 218z3 + 205z4 + 120z5 + 45z6 + 10z7 + z8 − 5z2(−27 +
η)− 4z(−11 + η)− η) and p(z) = (−1− 10z − 45z2 − 120z3 − 205z4 − 218z5 +
5z6(−27 + η) + 4z7(−11 + η) + z8(−6 + η)).

We find that J(z, η) is dependent on a parameter η, independently of m,A
and B. To figure out the dynamics behind iterative map, we describe the fixed
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points of J(z, η) and their stability [12]. Since M(z) is a fixed point of J(z, η)
for a fixed point z of If with M−1(z) = zB−A

z−1 , we have

ϕ(z, η) = z − J(z, η) =
z(z − 1)T (z)

t(z)
, (3)

with
T (z) = (1 + 15z + 105z2 + 455z3 + 1365z4 + 1365z4 + 1365z10 + 455z11 +

105z12+15z13+z14++z5(2973+5η)+z9(2973+5η)+3z6(1587+8η3z
8(1587+

8η) + z7(5578 + 42η)),

t(z) = (1+ 4z+5+ z2)(1+ 10z+45z2 +120z3 +205z4 +218z5 − 5z6(−27+
η)− 4z7(−11 + η)− z8(−6 + η)).

Theorem 2.1. (1) If η = 392
5 , then we get a factor (z − 1) for t(z) and

ϕ (z, η) =
z T1(z)

(1 + 4z + 5z2) t1(z)
,

where T1(z) = 5z14 + 5+ 75z + 525z2 + 2275z3 + 16825z5 + 6825z4 + 33213z6 +
44354z7 +33213z8 +6825z10 +16825z9 +2275z11 +525z12 +75z13 and t1(z) =
5 + 55z + 280z2 + 880z3 + 1905z4 + 2995z5 + 1710z6 + 362z7.

(2) If η = − 6232
25 , then we have

ϕ(z, η) = − (−1 + z)3z T2(z)

(1 + 4z + 5z2) t2(z)
,

where T2(z) = 6382z825 + 425z + 3450z2 + 17850z3 + 66375z4 + 158065z5 +
219212z6+158065z7+66375z8+345010+17850z9+425z11+25z12 and t2(z) =
25 + 250z + 1125z2 + 3000z3 + 5125z4 + 5450z5 + 3435z6 + 26028z7.

(3) If z ̸= 0 is a η- dependent fixed point of J for η /∈ { 392
5 ,− 6232

25 }, then 1
z is

a fixed point. For a given η, the strange fixed points are found from the fourteen
numerical roots of T (z) = 0.

Proof. (1) We find T (1) = 20(−392+5η) = 0 for η = 392
5 to have a factor (z−1)

(2) We have T (1) = 4(6232 + 25η) = 0, T ′(1) = 28(6232 + 25η) = 0 for
η = − 6232

25 to have a factor (z − 1)2.

(3) Since T ( 1z ) = T (z)/z14 for z ∈ C − {0} , 1
z is a fixed point of J(z, η). We

get the strange fixed points z with T (z) = 0 for a values of η /∈ { 392
5 ,− 6232

25 }.
If we find out seven roots vi, i ∈ {1, 2, · · · 7} of T (z) = 0, we factor T (z) =
Π7

i=1(z − vi)(z − 1
vi
). □

Let η /∈ {392
5 ,− 6232

25 } and v1, v2, v3, v4, v5, v6, v7 ∈ C − {0} be seven roots of
T (z). Then T (z) can be factored with seven second-degree polynomials oven the
real field in case of

T (z) =

7∏
i=1

(1 + siz + z2) =

7∏
i=1

(z − vi)(z −
1

vi
)
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where si = −(vi +
1
vi
), for i ∈ {1, 2, · · · 7} in terms of η.

Computing J ′(z, η), the derivative of J , we have

J ′(z, η) = −2z5(1 + z)14Q(z)

q(z)
2 , (4)

where

Q(z) =15(−6 + η) + 15z6(−6 + η) + 5z2(−374 + 5η) + 5z4(−374 + 5η)

+ 7z(−92 + η) + 7z5(−92 + 7η)− 2z3(1316 + 39η),

q(z) =(1 + 4z + 5 + z2)(1 + 10z + 45z2 + 120z3 + 205z4 + 218z5

− 5z6(−27 + η)− 4z7(−11 + η)− z8(−6 + η)).

Lemma 2.2. Q( 1z ) =
Q(z)
z6 holds for z ∈ C − {0}.

Theorem 2.3. (1) If η = 392
5 , we have

J ′(z, η) = − 20z5(1 + z)14 Q1(z)

(1 + 4z + 5z2)2q1(z)2
,

where Q1(z) = 2715 + 13424z + 24358z2 + 13424z3 + 2715z4 and q1(z) = 5 +
55z + 280z2 + 880z3 + 1905z4 + 2995z5 + 1710z6 + 362z7.

(2) If η = − 6232
25 , then

J ′(z, η) =
100z5(1 + z)14 Q2(z)

(1 + 4z + 5z2)2 q2(z)2
,

where Q2(z) = 47865+160734z+101275z2−210148z3+101275z4+160734z5+
47865z6) and q2(z) = 25+250z+1125z2+3000z3+5125z4+5450z5+34535z6+
26028z7 + 6382z8.

(3) If η = 6, we have

J ′(z, η) =
20z5(1 + z)14 Q3(z)

(1 + 4z + 5z2)2 q3(z)2
,

where Q3(z) = 35 + 172z + 310z2 + 172z3 + 35z4 and q3(z) = 1 + 10z + 45z2 +
120z3 + 205z4 + 218z5 + 105z6 + 20z7.

Proof. (1) Assume that for z , q(z) = 0 and Q(z) = 0. Eliminating η from
q(z) = 0 and Q(z) = 0, we have the relations (−1+ z)(1+ z)(1+ 4z+5z2)(15+
124z + 450z2 + 935z3 + 1185z4 + 890z5 + 392z6 + 95z7 + 10z8). Then (z − 1) is
considered to be a common division of Q(z) and q(z). After computing q(1) =
7840− 100η = 0 and Q(1) = 20(−392+ 5η) = 0, we have η = 392

5 for a common
factor (z − 1).

(2) The fixed point for η = − 6232
25 is considered in Theorem 1.

(3) We have Q(z) as a factor of z for Q(0) = 15(−6 + η) = 0 fwith η = 6,
. □
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In Figure 1, the typical stability of fixed points are shown by illustrative
conical surfaces . The critical point of the iteration map are given by J ′(z, η) = 0,
and we know that the points z = 0 and z = ∞ in domain of f are critical points
associated with the zeros A and B of the form ((z − A)(z − B))m. The critical
values that are not the zeros of the polynomial ((z−A)(z−B))m are free critical
points. We find that one critical point z = 1 is a free critical point.

(a) |ℜ(t)| ≤ 5, 000, |ℑ(t)| ≤ 5, 000 (b) |ℜ(t)| ≤ 50, 000, |ℑ(t)| ≤ 50, 000

(c) |ℜ(t)| ≤ −50, |ℑ(t)| ≤ 50 (d) |ℜ(t)| ≤ 50, 000, |ℑ(t)| ≤ 50, 000

Figure 1. Stability surfaces.

3. Conclusion

Let P = {η ∈ C : a critical orbit of z converges to a number wp ∈ C}. It is
called the parameter space. There are finite periods in the orbit if the number
wp is a finite constant. Otherwise, the orbit is not periodic however it is bounded
or goes to infinity.

We utilize a systematic method for coloring a point t ∈ P according to the
orbital period of z under J(z, η). Then the point t is painted in corresponding
color Ck if t induces a k-periodic orbit with k ∈ N ∪ {0} under J(z, η). We use
a tolerance of 10−6 after up to 1000-2000 iterations [20] to allow for desired k
periodic convergence of an orbit related to P. We use the color Cq according to
the color palette in Table 1.

Lemma 3.1. Let g : C2 → C, g(η, z) = p0(z) + p1(z) · η+ p2(z) · η2 be complex
polynomials with real coefficients with pi(z), i ∈ {1, 2}. g(η, z) = 0. Let z̄ be a
complex conjugate of z. Then the following holds.
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(1) η(z̄) = η(z).
(2) If z(η) is a root of g, then so is z̄(η̄).

Proof. (1) Solving g(η, z) = 0 for η, we have

η(z) =
−p1(z)±

√
p1(z)2 − 4p1(z)p2(z)

2p1(z)

Since pi(z) are complex polynomial with real coefficients, we get pi(z̄) = pi(z).

η(z̄) =
−p1(z̄)±

√
p1(z̄)2 − 4p1(z̄)p2(z̄)

2p1(z̄)
=

−p1(z)±
√
p1(z)

2
− 4p1(z)p2(z)

2p1(z)
.

Then η(z̄) = η(z).

(2) Let z(η) be a zero of g(η, z). Then g(η, z) = g(η, z) = p0(z) + p1(z) · η +

p2(z) · η2 = p0(z) + p1(z) · η + p2(z) · η2 = g(η, z)
□

Theorem 3.2. Let z(η) be a free critical point of iteration map J(z, η). Then
the parameter space is symmetrical about horizontal axis.

Proof. If z(η) is a zero of Q(z), then z̄(η̄) is a zero of Q(z). From conjagted map
J(z, η), we have

|J(z, η)| = |J(z(η), η)| = |J(z(η), η)| = |J(z(η), η̄)| = |J(z̄(η̄), η̄)|,
which implies that the parameter spaces related with map J(z, η) is symmetric
with respect to its horizontal axis. □

In Figures 2, we display the parameter spaces P. A point ϵ ∈ P is painted
using the coloring scheme shown in Table 1. In terms of numerical phenom-
ena, every point of the parameter space P whose color is none of magenta(root
z = B), cyan(root z = A), red or yellow is not a better choice of t. We find
the complicated but fancy pattern and for n ∈ N −{1}, n-periodic orbit is bud-
ding at period-1 component and 6-periodic component is budding at period-3
component.
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Table 1. Color palette for a i-periodic orbit with i ∈ N ∪ {0}

i Ci

i = 1 C1 =


magenta, ∞,

cyan, 0,

yellow, 1,

red, for other strange fixed point ,

2 ≤ i ≤ 68 C2 = orange, C3 = light green, C4 = dark red, C5 = dark blue, C6 = dark green, C7 = dark yellow,

C8 = floral white, C9 = light pink, C10 = khaki, C11 = dark orange, C12 = turquoise, C13 = lavender,
C14 = thistle, C15 = plum, C16 = orchid, C17 = medium orchid, C18 = blue violet, C19 = dark orchid,

C20 = purple, C21 = power blue, C22 = sky blue, C23 = deep sky blue, C24 = dodger blue, C25 = royal blue,

C26 = medium spring green, C27 = spring green, C28 = medium sea green, C29 = sea green, C30 = forest green,
C31 = olive drab, C32 = bisque, C33 = moccasin, C34 = light salmon, C35 = salmon, C36 = light coral,

C37 = Indian red, C38 = brown, C39 = fire brick, C40 = peach puff, C41 = wheat, C42 = sandy brown,

C43 = tomato, C44 = orange red, C45 = chocolate, C46 = pink, C47 = pale violet red, C48 = deep pink,
C49 = violet red, C50 = gainsboro, C51 = light gray, C52 = dark gray, C53 = gray, C54 = charteruse,

C55 = electric indigo, C56 = electric lime, C57 = lime, C58 = silver, C59 = teal, C60 = pale turquoise,

C61 = sandy brown, C62 = honeydew, C63 = misty rose, C64 = lemon chiffon, C65 = lavender blush,
C66 = gold, C67 = crimson, C68 = tan.

i = 0∗ or i > 69 Ci = black.

∗: i = 0 : the orbit is non-periodic but bounded.

-300. -250. -200. -150. -100. -50.

-125.

-75.

-25.

25.

75.

0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.

-50.

-40.

-30.

-20.

-10.

0.

10.

20.

30.

(a) −300 ≤ ℜ(t) ≤ −50, |ℑ(t)| ≤ 125 (b) 0 ≤ ℜ(t) ≤ 100, |ℑ(t)| ≤ 50

0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.

-50.

-40.

-30.

-20.

-10.

0.

10.

20.

30.

150.160.170.180.190.200.210.220.230.240.250.260.270.280.290.300.310.320.330.340.350.360.370.380.390.400.410.420.430.440.450.460.470.480.490.500.
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65.
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105.

115.

125.

135.
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155.

165.

175.

(c) 0 ≤ ℜ(t) ≤ 100, |ℑ(t)| ≤ 50 (d) 150 ≤ ℜ(t) ≤ 450, |ℑ(t)| ≤ 180

Figure 2. Parameter spaces.

Möbius conjugacy maps along with the property of dynamical analysis for
the uniparametric family of sixth-order multiple-root finders are studied and the
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complex dynamical analysis on the Riemann sphere is analyzed by investigating
the parameter spaces related with the free critical points. The stability surfaces
of the strange fixed points for the conjugacy map are displayed. As the future
work, we deal with the visualization of different types of numerical methods by
improving the current work. In addition, we investigate the convergent region
and the basins of attraction of the developed multiple-root finder in detail.

Conflicts of interest : The author declare no conflict of interest.

Data availability : Not applicable
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