DOI QR코드

DOI QR Code

ON DYNAMICS OF A SIXTH-ORDER MULTIPLE-ROOT FINDER FOR NONLINEAR EQUATIONS

  • Received : 2023.11.13
  • Accepted : 2024.01.12
  • Published : 2024.01.30

Abstract

A family of sixth-order multiple-root solver have been developed and the special case of weight function is investigated. The dynamical analysis of selected iterative schemes with uniparametric polynomial weight function are studied using Möbius conjugacy map applied to the form ((z - A)(z - B))m and the stability surfaces of the strange fixed points for the conjugacy map are displayed. The numerical results are shown through various parameter spaces.

Keywords

Acknowledgement

The author is supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education under the research grant(Project Number:NRF-2021R1A2C1012922.

References

  1. L.V. Ahlfors, Complex Analysis, McGraw-Hill Book Inc., 1979.
  2. A. Alexanderian, On continuous dependence of roots of polynomials on coefficients, http://users.ices.utxas.edy/alen/articles/polyroots.pdf, 2013.
  3. S. Amat, S. Busquier and S. Plaza, Review of some iterative root-finding methods from a dynmaical point of view, Scientia 10 (2004), 3-35.
  4. A.F. Beardon, Iteration of Rational Funtions, Springer-Verlag, New York, 1991.
  5. R. Behl, A. Cordero, S. Mosta and J. Torregrosa, On developing fourth-order optimal families of methods for mulitiple roots and their dynamics, Appl. Math. and Computing 265 (2015), 520-532. https://doi.org/10.1016/j.amc.2015.05.004
  6. P. Blanchard, The dynamics of Newton's mehtod, Pro. Symposia in Appl. Math. 49 (1994), 139-154. https://doi.org/10.1090/psapm/049/1315536
  7. F. Chicharro, A. Cordero, J. Guti'errez and J. Torregrosa, Complex dynamics of derivative-free methods for nonlinear equations, Appl. Math. Computing 219 (2013), 7023-7035.
  8. C. Chun and B. Neta, Basins of attraction for Zhou-Chen-Song fourth order family of methods for multiple root, Math. Computing Simulat. 109 (2015), 74-91. https://doi.org/10.1016/j.matcom.2014.08.005
  9. A. Cordeor, J. Garc'ia-Maim'o, J.R. Torregrosa, M.P. Vassileva and P. Vindel, Chaos in King's iterative family, Appl. Math. Lett. 119 (2016), 842-848.
  10. R.L. Devaney, Complex dynamical systems: the mathematics behind the Mandelbrot and Julia sets, Pro. Symposia in Appl. Math. ISSN 0160-7634 49 (1994), 1-29.
  11. Y.H. Geum, Y.I. Kim and B. Neta, A sixth-order family of three-point modified Newton-like multiple-root finders and thier dynamics behind their extraneous fixed points, Appl. Math. Computing 283 (2016), 120-140. https://doi.org/10.1016/j.amc.2016.02.029
  12. D. Gulick, Encounters with Chaos, McGraw-Hill Inc., 1992.
  13. L. Hormander, Introduction to complex analysis in several variables, North-Holland Publishing Company, 1973.
  14. S. Lipschutz, Theory and Problems of General Topology, Schaum's Outline Seires, McGraw-Hill Inc., 1965.
  15. H.T. Kung and J.F. Traub, Optimal order of one-point and multipoint iteration, J. Assoc. Computing Mach. 21 (1974), 643-651. https://doi.org/10.1145/321850.321860
  16. A.A. Magrenan, A. Cordeor, J.M. Gutierrez and J.R. Torregrosa, Real qualitative behavior of a fourth-order family of iterative methods by using the convergence plane, Math. Computing Simulat. 105 (2014), 49-61. https://doi.org/10.1016/j.matcom.2014.04.006
  17. H. Peitgen and P. Richter, The Beauty of Fractals, Springer-Verlag, 1986.
  18. B.V. Shabat, Introduction to Complex Analysis PART 2, Functions of several Variables, American Math. society, 1992.
  19. J.F. Traub, Iterative Methods for the solution of Equations, Chelsea Publishing Company, 1982.
  20. S. Wolfram, The Mathematica Book, 5th ed, Wolfram Media, 2003.