Browse > Article
http://dx.doi.org/10.4134/JKMS.j190378

INVARIANCE OF KNEADING MATRIX UNDER CONJUGACY  

Gopalakrishna, Chaitanya (Department of Mathematical and Computational Sciences National Institute of Technology Karnataka Surathkal)
Veerapazham, Murugan (Department of Mathematical and Computational Sciences National Institute of Technology Karnataka Surathkal)
Publication Information
Journal of the Korean Mathematical Society / v.58, no.2, 2021 , pp. 265-281 More about this Journal
Abstract
In the kneading theory developed by Milnor and Thurston, it is proved that the kneading matrix and the kneading determinant associated with a continuous piecewise monotone map are invariant under orientation-preserving conjugacy. This paper considers the problem for orientation-reversing conjugacy and proves that the former is not an invariant while the latter is. It also presents applications of the result towards the computational complexity of kneading matrices and the classification of maps up to topological conjugacy.
Keywords
Dynamical system; piecewise monotone map; topological conjugacy; kneading matrix; kneading determinant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. L. Rocha and J. S. Ramos, Weighted kneading theory of one-dimensional maps with a hole, Int. J. Math. Math. Sci. 2004 (2004), no. 37-40, 2019-2038. https://doi.org/10.1155/S016117120430428X   DOI
2 H. H. Rugh and T. Lei, Kneading with weights, J. Fractal Geom. 2 (2015), no. 4, 339-375. https://doi.org/10.4171/JFG/24   DOI
3 W. Zhang, PM functions, their characteristic intervals and iterative roots, Ann. Polon. Math. 65 (1997), no. 2, 119-128. https://doi.org/10.4064/ap-65-2-119-128   DOI
4 J. F. Alves and J. Sousa Ramos, Kneading theory: a functorial approach, Comm. Math. Phys. 204 (1999), no. 1, 89-114. https://doi.org/10.1007/s002200050639   DOI
5 L. Alvin and K. Brucks, Adding machines, kneading maps, and endpoints, Topology Appl. 158 (2011), no. 3, 542-550. https://doi.org/10.1016/j.topol.2010.12.005   DOI
6 L. Block, J. Keesling, and D. Ledis, Semi-conjugacies and inverse limit spaces, J. Difference Equ. Appl. 18 (2012), no. 4, 627-645. https://doi.org/10.1080/10236198.2011. 611803   DOI
7 A. Caneco, C. Gracio, and J. L. Rocha, Kneading theory analysis of the Duffing equation, Chaos Solitons Fractals 42 (2009), no. 3, 1529-1538. https://doi.org/10.1016/j.chaos.2009.03.040   DOI
8 R. L. Devaney, An Introduction to Chaotic Dynamical Systems, reprint of the second (1989) edition, Studies in Nonlinearity, Westview Press, Boulder, CO, 2003.
9 C. Gopalakrishna and M. Veerapazham, Relation between kneading matrices of a map and its iterates, Commun. Korean Math. Soc. 35 (2020), no. 2, 571-589. https://doi.org/10.4134/CKMS.c190255   DOI
10 R. A. Holmgren, A First Course in Discrete Dynamical Systems, Universitext, SpringerVerlag, New York, 1994. https://doi.org/10.1007/978-1-4684-0222-3   DOI
11 D. A. Mendes and J. S. Ramos, Kneading theory for triangular maps, Int. J. Pure Appl. Math. 10 (2004), no. 4, 421-450.
12 J. Milnor and W. Thurston, On iterated maps of the interval. I. the kneading matrix, and II. periodic points, Preprint, Princeton University, 1977.
13 J. Milnor and W. Thurston, On iterated maps of the interval, in Dynamical systems (College Park, MD, 1986-87), 465-563, Lecture Notes in Math., 1342, Springer, Berlin, 1988. https://doi.org/10.1007/BFb0082847   DOI
14 J. F. Alves and J. Sousa Ramos, Kneading theory for tree maps, Ergodic Theory Dynam. Systems 24 (2004), no. 4, 957-985. https://doi.org/10.1017/S014338570400015X   DOI
15 C. Preston, Iterates of maps on an interval, Lecture Notes in Mathematics, 999, Springer-Verlag, Berlin, 1983. https://doi.org/10.1007/BFb0061749   DOI
16 C. Preston, Iterates of piecewise monotone mappings on an interval, Lecture Notes in Mathematics, 1347, Springer-Verlag, Berlin, 1988. https://doi.org/10.1007/BFb0079769   DOI
17 C. Preston, What you need to know to knead, Adv. Math. 78 (1989), no. 2, 192-252. https://doi.org/10.1016/0001-8708(89)90033-9   DOI