• Title/Summary/Keyword: congestion cost

Search Result 284, Processing Time 0.026 seconds

Cost Function of Congestion-Prone Transportation Systems (혼잡현상을 갖는 교통체계의 비용함수)

  • Mun, Dong-Ju;Kim, Hong-Bae
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.209-230
    • /
    • 2007
  • This paper analyzed the social cost function of a congestion-prone service system, which is developed from the social cost minimization problem. The analysis focused on the following two issues that have not been explicitly explored in the previous studies: the effect of the heterogeneity of value-of-travel-times among customers on the structure of cost functions; and the structure of the supplier cost function constituting the social cost function. The analysis gave a number of findings that could be summarized as follows. First, the social marginal cost for one unit increase in system output having a certain value-of-travel-time is the sum of the service time cost for that value-of-travel-time and the marginal congestion cost for the average value-of-service-time of all the system outputs. Second, the marginal congestion cost equals the marginal supplier cost of system output under the condition that supplier compensates the customers for the changed service time costs which is incurred by the marginal capacity increase necessary for economically facilitating an additional system output. Third, the compensated marginal cost is the multiple of the marginal capacity cost and the inverse of system utilization ratio, if the service time function is homogeneous of degree zero in its inputs.

A Basic Study on Relationship between Reliability and Congestion Cost of Composite Power System (복합전력계통의 신뢰도와 혼잡비용과의 상관관계성에 관한 기초 연구)

  • Choi, J.S.;Tran, T.T.;Kwon, J.J.;Jeong, S.H.;Bo, Shi;Mount, Timothy;Thomas, Robert
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.275-278
    • /
    • 2006
  • This paper describes a probabilistic annual congestion cost assessment of a grid at a composite power system derived from a model. This probabilistic congestion cost assessment simulation model includes capacity limitation and uncertainties of the generators and transmission lines. In this paper, the proposed probabilistic congestion cost assessment model is focused on an annualized simulation methodology for solving long-term grid expansion planning issues. It emphasizes the questions of "how should the uncertainties of system elements (generators, lines and transformers, etc.) be considered for annual congestion cost assessment from the macro economic view point"? This simulation methodology comes essentially from a probabilistic production cost simulation model of composite power systems. This type of model comes from a nodal equivalent load duration curve based on a new effective load model at load points. The characteristics and effectiveness of this new simulation model are illustrated by several case studies of a test system.

  • PDF

Congestion and Loss cost for economic subject using Optimal Power Flow (최적 조류 계산을 이용한 경제주체별 혼잡 및 손실비용 산정)

  • Seo, Chul-Soo;Yoon, Gi-Gab;Park, Sang-Ho;Choy, Young-Do;Lee, Jae-Gul;Son, Hyun-Il;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.430-431
    • /
    • 2011
  • Recently the power system consists of the more complicated structure, due to increase of power demands. In this circumstance, the congestion and loss capacity in transmission line is also increased. Accordingly, the investment planning of transmission system is required to reduce the congestion and loss of the transmission line. In study of the planning of domestic and international transmission expansion, the reliability of transmission planning and minimizing Investment cost is focused. However, the study has not been performed systematically in economic aspects. Typically, the congestion and loss costs have been individually calculated. It is not consider the mutual relationship between the congestion cost and the loss cost. This paper proposes a method to compute concurrently the congestion and loss costs. This purpose is to calculate the more exact value for economic assessment of the power system operation.

  • PDF

A Study of Reducing Congestion Cost using Decoupled Optimal Power Flow (분할 최적조류계산을 이용한 송전선 혼잡비용 감소 연구)

  • Jeong, Yun-Ho;Lee, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.107-109
    • /
    • 2000
  • This paper presents an algorithm for reducing congestion cost using decoupled optimal power flow. The main idea of this algorithm is to reduce the reactive power flows on the congested lines in reactive power optimization. New objective function for reducing congestion cost is proposed in the reactive formulation by introducing the shadow prices for congested lines. The proposed algorithm is tested for IEEE 14-bus sample system, and the results are presented and discussed.

  • PDF

Estimation of the Expressway Traffic Congestion Cost Using Vehicle Detection System Data (VDS 자료 기반 고속도로 교통혼잡비용 산정 방법론 연구)

  • Kim, Sang Gu;Yun, Ilsoo;Park, Jae Beom;Park, In Ki;Cheon, Seung Hoon;Kim, Kyung Hyun;Ahn, Hyun Kyung
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.99-107
    • /
    • 2016
  • PURPOSES : This study was initiated to estimate expressway traffic congestion costs by using Vehicle Detection System (VDS) data. METHODS : The overall methodology for estimating expressway traffic congestion costs is based on the methodology used in a study conducted by a study team from the Korea Transport Institute (KOTI). However, this study uses VDS data, including conzone speeds and volumes, instead of the volume delay function for estimating travel times. RESULTS : The expressway traffic congestion costs estimated in this study are generally lower than those observed in KOTI's method. The expressway lines that ranked highest for traffic congestion costs are the Seoul Ring Expressway, Gyeongbu Expressway, and the Youngdong Expressway. Those lines account for 64.54% of the entire expressway traffic congestion costs. In addition, this study estimates the daily traffic congestion costs. The traffic congestion cost on Saturdays is the highest. CONCLUSIONS : This study can be thought of as a new trial to estimate expressway traffic congestion costs by using actual traffic data collected from an entire expressway system in order to overcome the limitations of associated studies. In the future, the methodology for estimating traffic congestion cost is expected to be improved by utilizing associated big-data gathered from other ITS facilities and car navigation systems.

Stochastic Traffic Congestion Evaluation of Korean Highway Traffic Information System with Structural Changes

  • Lee, Yongwoong;Jeon, Saebom;Park, Yousung
    • Asia pacific journal of information systems
    • /
    • v.26 no.3
    • /
    • pp.427-448
    • /
    • 2016
  • The stochastic phenomena of traffic network condition, such as traffic speed and density, are affected not only by exogenous traffic control but also by endogenous changes in service time during congestion. In this paper, we propose a mixed M/G/1 queuing model by introducing a condition-varying parameter of traffic congestion to reflect structural changes in the traffic network. We also develop congestion indices to evaluate network efficiency in terms of traffic flow and economic cost in traffic operating system using structure-changing queuing model, and perform scenario analysis according to various traffic network improvement policies. Empirical analysis using Korean highway traffic operating system shows that our suggested model better captures structural changes in the traffic queue. The scenario analysis also shows that occasional reversible lane operation during peak times can be more efficient and feasible than regular lane extension in Korea.

Model of Information Exchange for Decentralized Congestion Management

  • Song, Sung-Hwan;Jeong, Jae-Woo;Yoon, Yong-Tae;Moon, Seung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.141-150
    • /
    • 2012
  • The present study examines an efficient congestion management system compatible with the evolving environment. The key is to build an information model shared and exchanged for marketbased solutions to alleviate congestion. Traditional methods for congestion management can be classified into two categories, i.e., the centralized scheme and the decentralized scheme, depending on the extent to which the independent system operator (ISO) is involved in market participants' (MPs) activities. Although the centralized scheme is more appropriate for providing reliable system operation and relieving congestion in near real-time, the decentralized scheme is preferred for supporting efficient market operation. The minimum set of information between the ISO and MPs for decentralized scheme is identified: i) congestion-based zone, ii) Power Transfer Distribution Factors, and iii) transmission congestion cost. The mathematical modeling of the proposed information is expressed, considering its process of making effective use of information. Numerical analysis is conducted to demonstrate both cost minimization from the MP perspective and the reliability enhancement from the ISO perspective based on the proposed information exchange scheme.

A Study on The Generation Redispatch for Congestion Management of Transmission Lines (송전선 혼잡 해소를 위한 발전력 재배분 기법 연구)

  • Jung, Jae-Ok;Lee, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.347-349
    • /
    • 2000
  • Under an open transmission access, the generation dispatch is determined by the bidding process of market participants. Congestion occurs when the dispatch would result in the violation of operational constraints. Congestion problem is formulated and solved by OPF(optimal power flow) calculation. The objective functions in OPF are given as quadratic cost functions or piecewise linear functions of bidding functions. In this study, the optimization technique of generation dispatch is presented for the combination of two types of quadratic and linear cost functions.

  • PDF

Optimal Transmission Expansion Planning Considering the Uncertainties of Power Market (전력시장 불확실성을 고려한 최적 송전시스템 확장계획)

  • Son, Min-Kyun;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.560-566
    • /
    • 2008
  • Today, as the power trades between generation companies and power customer are liberalized, the uncertainty level of operated power system is rapidly increased. Therefore, transmission operators as decision makers for transmission expansion are required to establish a deliberate investment plan for effective operations of transmission facilities considering forecasted conditions of power system. This paper proposes the methodology for the optimal solution of transmission expansion in deregulated power system. The paper obtains the expected value of transmission congestion cost for various scenarios by using occurrence probability. In addition, the paper assumes that increasing rates of loads are the probability distribution and indicates the location of expanded transmission line, the time for transmission expansion with the minimum cost for the future by performing the Montecarlo simulation. To minimize the investment risk as the variance of the congestion cost, Mean-Variance Markowitz portfolio theory is applied to the optimization model by the penalty factor of the variance. By the case study, the optimal solution for transmission expansion plan considering the feature of market participants is obtained.

An Analysis of Congestion Cost for Electric Power Transmission in Consideration of Uncertainty of Future Electric Power System (미래 전력 계통의 불확실성을 고려한 송전혼잡비용 분석)

  • Park, Sung Min;Kim, Sung Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.131-137
    • /
    • 2014
  • It is expected that there will be delay of scheduled transmission network reinforcement and huge investment of renewable energy resources in Korea. As transmission capacity expansion delayed, supplying power to Seoul metropolitan area will not be increased as scheduled. In addition, uncertain renewable energy out of Seoul metropolitan area can cause transmission congestion in the future power system. These two combining effects will make the difference in locational marginal prices(LMP) and congestion costs increase. In that sense, this paper will analyze how much the congestion costs for Korea power system are incurred in the future power system. Most of previous approaches to analyze the congestion costs for electric power system are based on the optimal power flow model which cannot deal with hourly variation of power system. However, this study attempted to perform the analysis using market simulation model(M-Core) which has the capability of analyzing the hourly power generation cost and power transmission capacity, and market prices by region. As a result, we can estimate the congestion costs of future power system considering the uncertainty of renewable energy and transmission capacity.