• 제목/요약/키워드: conformal metric

검색결과 49건 처리시간 0.023초

SINGULAR THEOREMS FOR LIGHTLIKE SUBMANIFOLDS IN A SEMI-RIEMANNIAN SPACE FORM

  • Jin, Dae Ho
    • East Asian mathematical journal
    • /
    • 제30권3호
    • /
    • pp.371-383
    • /
    • 2014
  • We study the geometry of lightlike submanifolds of a semi-Riemannian manifold. The purpose of this paper is to prove two singular theorems for irrotational lightlike submanifolds M of a semi-Riemannian space form $\bar{M}(c)$ admitting a semi-symmetric non-metric connection such that the structure vector field of $\bar{M}(c)$ is tangent to M.

THE STRUCTURE CONFORMAL VECTOR FIELDS ON A SASAKIAN MANIFOLD

  • Hyun, Jong-Ik
    • 대한수학회논문집
    • /
    • 제9권2호
    • /
    • pp.393-400
    • /
    • 1994
  • Let M(f,η,ξ,g) be a (2m + 1)-dimensional Sasakian manifold with soldering form dp ∈ ΓHom(Λ/sup q/TM, TM) (dp: canonical vector-valued 1-form) where f,η,ξ and g are the (1,1)-tensor field, the structure 1-form, the structure vector field and the metric tensor of M, respectively.(omitted)

  • PDF

ON THE TRANSVERSAL CONFORMAL CURVATURE TENSOR ON HERMITIAN FOLIATIONS

  • Pak, Hong-Kyung
    • 대한수학회보
    • /
    • 제28권2호
    • /
    • pp.231-241
    • /
    • 1991
  • Recently, many mathematicians([NT], [Ka], [TV], [CW], etc.) studied foliated structures on a smooth manifold with the viewpoint of transversal differential geometry. In this paper, we shall discuss certain hermitian foliations F on a riemannian manifold with a bundle-like metric, that is, their transversal bundles to F have hermitian structures.

  • PDF

A CLASSIFICATION OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Jin, Dae Ho;Lee, Jae Won
    • 대한수학회보
    • /
    • 제50권3호
    • /
    • pp.705-717
    • /
    • 2013
  • In this paper, we study the geometry of half lightlike submanifolds M of a semi-Riemannian manifold $\tilde{M}$ with a semi-symmetric non-metric connection subject to the conditions; (1) the characteristic vector field of $\tilde{M}$ is tangent to M, the screen distribution on M is totally umbilical in M and the co-screen distribution on M is conformal Killing, or (2) the screen distribution is integrable and the local lightlike second fundamental form of M is parallel.

ON $\eta$K-CONFORMAL KILLING TENSOR IN COSYMPLECTIC MANIFOLD WITH VANISHING COSYMPLECTIC BOCHNER CURVATURE TENSOR$^*$

  • Jun, Jae-Bok;Kim, Un-Kyu
    • 대한수학회보
    • /
    • 제32권1호
    • /
    • pp.25-34
    • /
    • 1995
  • S. Tachibana [10] has defined a confornal Killing tensor in a n-dimensional Riemannian manifold M by a skew symmetric tensor $u_[ji}$ satisfying the equation $$ \nabla_k u_{ji} + \nabla_j u_{ki} = 2\rho_i g_{kj} - \rho_j g_{ki} - \rho_k g_{ji}, $$ where $g_{ji}$ is the metric tensor of M, $\nabla$ denotes the covariant derivative with respect to $g_{ji}$ and $\rho_i$ is a associated covector field of $u_{ji}$. In here, a covector field means a 1-form.

  • PDF

RIEMANNIAN SUBMANIFOLDS WITH CONCIRCULAR CANONICAL FIELD

  • Chen, Bang-Yen;Wei, Shihshu Walter
    • 대한수학회보
    • /
    • 제56권6호
    • /
    • pp.1525-1537
    • /
    • 2019
  • Let ${\tilde{M}}$ be a Riemannian manifold equipped with a concircular vector field ${\tilde{X}}$ and M a submanifold (with its induced metric) of ${\tilde{M}}$. Denote by X the restriction of ${\tilde{X}}$ on M and by $X^T$ the tangential component of X, called the canonical field of M. In this article we study submanifolds of ${\tilde{M}}$ whose canonical field $X^T$ is also concircular. Several characterizations and classification results in this respect are obtained.

RICCI-BOURGUIGNON SOLITONS AND FISCHER-MARSDEN CONJECTURE ON GENERALIZED SASAKIAN-SPACE-FORMS WITH 𝛽-KENMOTSU STRUCTURE

  • Sudhakar Kumar Chaubey;Young Jin Suh
    • 대한수학회지
    • /
    • 제60권2호
    • /
    • pp.341-358
    • /
    • 2023
  • Our aim is to study the properties of Fischer-Marsden conjecture and Ricci-Bourguignon solitons within the framework of generalized Sasakian-space-forms with 𝛽-Kenmotsu structure. It is proven that a (2n + 1)-dimensional generalized Sasakian-space-form with 𝛽-Kenmotsu structure satisfying the Fischer-Marsden equation is a conformal gradient soliton. Also, it is shown that a generalized Sasakian-space-form with 𝛽-Kenmotsu structure admitting a gradient Ricci-Bourguignon soliton is either ψ∖Tk × M2n+1-k or gradient 𝜂-Yamabe soliton.

HYPERBOLIC AND SPHERICAL POWER OF A CIRCLE

  • Young Wook Kim;Sung-Eun Koh;Hyung Yong Lee;Heayong Shin;Seong-Deog Yang
    • 대한수학회보
    • /
    • 제60권2호
    • /
    • pp.507-514
    • /
    • 2023
  • Suppose that a line passing through a given point P intersects a given circle 𝓒 at Q and R in the Euclidean plane. It is well known that |PQ||P R| is independent of the choice of the line as long as the line meets the circle at two points. It is also known that similar properties hold in the 2-sphere and in the hyperbolic plane. New proofs for the similar properties in the 2-sphere and in the hyperbolic plane are given.