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HYPERBOLIC AND SPHERICAL POWER OF A CIRCLE
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Abstract. Suppose that a line passing through a given point P intersects

a given circle C at Q and R in the Euclidean plane. It is well known that
|PQ||PR| is independent of the choice of the line as long as the line meets

the circle at two points. It is also known that similar properties hold in

the 2-sphere and in the hyperbolic plane. New proofs for the similar
properties in the 2-sphere and in the hyperbolic plane are given.

1. Introduction

Suppose that a line passing through a given point P intersects a given circle
C at Q and R in the Euclidean plane. It is well known that |PQ||PR| is
independent of the choice of the line as long as the line meets the circle at two
points, which is called the power of the point P with respect to the circle C.
Furthermore, if a line passing through a given point P is tangent to the circle
C at T , it follows that

|PT |2 = |PQ||PR|.
It is interesting that a similar property holds in the round sphere S2 (2 di-
mensional simply connected Riemannian manifold with the positive constant
curvature 1) and in the hyperbolic plane H2 (2 dimensional simply connected
Riemannian manifold with the negative constant curvature −1).

Theorem 1. Suppose that a spherical line passing through a given point P
intersects a given spherical circle CS at Q and R in the 2-sphere S2 and that
P ∗, the antipodal point of P , is not on CS . Then

tan

(
1

2
|PQ|S

)
tan

(
1

2
|PR|S

)
is independent of the choice of the line as long as the line meets the circle CS
at two points, where |AB|S is a spherical distance between A and B.
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If another line passing through P is tangent to CS at T, then

tan2
(
1

2
|PT |S

)
= tan
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2
|PQ|S

)
tan
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2
|PR|S

)
,

which can be shown by continuity argument.

Theorem 2. Suppose that a hyperbolic line passing through a given point P
intersects a given hyperbolic circle CH at Q and R in the hyperbolic plane. Then

tanh

(
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2
|PQ|H

)
tanh

(
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2
|PR|H

)
is independent of the choice of the line as long as the line meets the circle CH
at two points, where |AB|H is the hyperbolic distance between A and B.

If another line passing through P is tangent to CH at T, then it holds that

tan2
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2
|PT |H

)
= tan
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)
tan
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2
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)
,

which can also be shown by continuity argument.
Proofs in the literature [2, 3] use spherical or hyperbolic trigonometry. Our

proofs in this note do not use these trigonometries, instead, utilize the Eu-
clidean power of the point with respect to circles. In order to utilize the
Euclidean power, we consider the stereographic projection for the proof of
Theorem 1 and use the Poincare’s unit disk model for the hyperbolic plane for
the proof of Theorem 2. Then we can show that the same property holds not
only for hyperbolic circles, but also for horocircles and hypercircles, because
they retain the circular appearances - only their centers are offset.

Figure 1. In the Poincare disk model for the hyperbolic
plane, hyperbolic circles, hypercircles and horocircles are all
(parts of) Euclidean circles.
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Theorem 3. Let CH be a horocircle or a hypercircle. Suppose that a hyperbolic
line passing through a given point P intersects CH at Q and R in the hyperbolic
plane. Then

tanh

(
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2
|PQ|H

)
tanh

(
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|PR|H

)
is independent of the choice of the line as long as the line meets CH at two
points. If another line passing through P is tangent to CH at T, it follows that

tanh2
(
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|PT |H

)
= tanh

(
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2
|PQ|H

)
tanh

(
1

2
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)
.

Theorem 4. Suppose that a hyperbolic line passing through a point P intersects
a horocircle CH at Q and R and another hyperbolic line passing through a point
P intersects CH transversally at U only. Then it follows that

tanh

(
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2
|PQ|H

)
tanh
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|PR|H

)
= tanh

(
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2
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)
.

Since |PU |H is the distance from the point to the horocircle CH , we think
this theorem is particularly interesting since it claims that the power of the
point P with respect to the horocircle CH determines the distance from the
point P to the horocircle CH . Furthermore, if another line passing through P
is tangent to the horocircle CH at T, it follows from continuity that

tanh2
(
1

2
|PT |H

)
= tanh

(
1

2
|PQ|H

)
tanh
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|PR|H

)
which then gives

tanh2
(
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2
|PT |H

)
= tanh

(
1

2
|PU |H

)
.

This equality also claims that the distance from the point P to the tangent
point to the horosphere determines the distance to the horocircle CH .

The method to use the Poincare disk model and the Euclidean geometry
to describe the power of a point with respect to the circle is not new, see, for
example, [1] for the description of the spherical and hyperbolic concepts and
their connections.

2. A proof of Theorem 1

We firstly remark that Theorem 1 does not hold if the point P ∗ is on CS , since
every spherical line passing through P passes through P ∗ and hence intersects
CS at P ∗.

Let us consider the unit sphere S2 in R3 with the center (0, 0, 0),

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}

and suppose that a spherical line la passing through P intersects the spherical
circle CS at A′

1, A
′
2 and another line lb passing through P intersects the circle
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Figure 2. The power of the point with respect to the horo-
circle determines the distance from the point to the horocircle.

CS at B′
1, B

′
2. We may assume that the coordinate of P is (0, 0,−1). Let

ϕ : S2 \ (0, 0, 1) → R2 be the stereographic projection. Then we have

• ϕ(P ) is the origin O of R2: ϕ(P ) = (0, 0),
• the image ϕ(CS) of the spherical circle CS is the Euclidean circle C,
• the images ϕ(la) and ϕ(lb) of the spherical lines la and lb are the Eu-
clidean lines passing through the origin O.

Let ϕ(A′
i) = Ai, ϕ(B

′
i) = Bi, i = 1, 2. Then the Euclidean line ϕ(la) passing

through the origin O intersects the Euclidean circle C at A1, A2 and the Eu-
clidean line ϕ(lb) passing through the origin O intersects the Euclidean circle
C at B1, B2. Now we have, see Figure 1,

|OAi| = tan

(
1

2
|PA′

i|S
)
, |OBi| = tan

(
1

2
|PB′

i|S
)
, i = 1, 2

and since it holds that

|OA1||OA2| = |OB1||OB2|

we have
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,

which completes the proof of Theorem 1.

3. Proofs of Theorem 2 and Theorem 3

We use the Poincare disk model(
D, ds2 =

4(dx2 + dy2)

(1− (x2 + y2)2)2

)
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Figure 3. Spherical distance and Euclidean distance.

for the hyperbolic plane H2. Let O be the center (0, 0) ∈ D. Among the reasons
why we choose this model are

• every hyperbolic line through O is the Euclidean line,
• every hyperbolic circle is a Euclidean circle in D,
• every horocircle is a Euclidean circle in D meeting the boundary circle

∂D tangentially,
• every hypercircle is a part of the Euclidean circle in D meeting the
boundary circle ∂D transversally,

• for a point Q ∈ D, the relation between the Euclidean distance |OP |
and the hyperbolic distance |OP |H is

|OP | = tanh

(
1

2
|OP |H

)
since

|OP |H =

∫ |OP |

0

2

1− r2
dr = ln

1 + |OP |
1− |OP |

.

Now let us prove Theorem 2. By applying proper isometry if necessary, we
may assume the given point is the center O. Suppose that a hyperbolic line
passing through O intersects CH at A1, A2 and another line passing through O
intersects CH at B1, B2. Then, since it holds that

|OA1||OA2| = |OB1||OB2|

we have

tanh

(
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2
|OA1|H

)
tanh
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2
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)
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)
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)
,

which completes the proof of Theorem 2 and Theorem 3.
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Figure 4. Power of a point with respect to a hyperbolic circle,
hypercircle, horocircle.

4. A Proof of Theorem 4

Suppose that a hyperbolic line l, which is not tangent to the horocircle CH ,
meets the horocircle CH . Then the set l ∩ CH consists either of two points or
of one point. The latter case happens only when the point B2 in the proof of
Theorem 3 is the horocenter of CH , which lies in ∂D, see Figure 5.

Figure 5. Horocenter of a horosphere.

Then, since |OB2| = 1, one has

|OA1||OA2| = |OB1|

and hence

tanh

(
1

2
|OA1|H

)
tanh

(
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2
|OA2|H

)
= tanh

(
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2
|OB1|H

)
,

which completes the proof of Theorem 4. □
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We remark that, for a hypercircle CH , there are exactly two points B1, B2

on CH so that the equality in Theorem 4 holds,

tanh

(
1

2
|OA1|H

)
tanh

(
1

2
|OA2|H

)
= tanh

(
1

2
|OBi|H

)
, i = 1, 2,

see Figure 6.

Figure 6. Existence of B1, B2.

5. An observation: Steiner’s porism for horocircles

For a given hyperbolic circle CH , let us consider a finite set of horocircles,
all of which are tangent to CH and each horocircle in this set is tangent to the
previous and next horocircles in this set. If such a set of horocircles exists,
let us call them a closed chain of horocircles for the hyperbolic circle CH , see
Figure 7.

Figure 7. A closed chain of horocircles for a hyperbolic circle.



514 Y. W. KIM, S.-E. KOH, H. Y. LEE, H. SHIN, AND S.-D. YANG

Now the Steiner’s porism in the Euclidean plane gives the following porism:

Theorem 5. If at least one closed chain of n horocircles exists for a given
hyperbolic circle CH , then there is an infinite number of closed chains of n
horocircles; and any horocircle tangent to CH in the same way is a member of
such a chain.
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