• Title/Summary/Keyword: conformal

Search Result 770, Processing Time 0.029 seconds

Evaluation of Photoneutron Dose for Prostate Cancer Radiation Therapy by Using Optically Stimulated Luminescence Dosimeter (OSLD) (전립선암 방사선치료 시 광자극발광선량계를 이용한 광중성자선량 평가)

  • Lee, Joo-Ah;Back, Geum-Mun;Kim, Yeon-Soo;Son, Soon-Yong;Choi, Kwan-Woo;Yoo, Beong-Gyu;Jeong, Hoi-Woun;Jung, Jae-Hong;Kim, Ki-Won;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.37 no.2
    • /
    • pp.125-134
    • /
    • 2014
  • This study is to provide basic information regarding photoneutron doses in terms of radiation treatment techniques and the number of portals in intensity-modulated radiation therapy (IMRT) by measuring the photoneutron doses. Subjects of experiment were 10 patients who were diagnosed with prostate cancer and have received radiation treatment for 5 months from September 2013 to January 2014 in the department of radiation oncology in S hospital located in Seoul. Thus, radiation treatment plans were created for 3-Dimensional Conformal Radiotherapy (3D-CRT), Volumetric-Modulated Arc Radiotherapy (VMAT), IMRT 5, 7, and 9 portals. The average difference of photoneutron dose was compared through descriptive statistics and variance analysis, and analyzed influence factors through correlation analysis and regression analysis. In summarized results, 3D-CRT showed the lowest average photoneutron dose, while IMRT caused the highest dose with statistically significance (p <.01). The photoneutron dose by number of portals of IMRT was $4.37{\pm}1.08mSv$ in average and statistically showed very significant difference among the number of portals (p <.01). Number of portals and photoneutron dose are shown that the correlation coefficient is 0.570, highly statistically significant positive correlation (p <.01). As a result of the linear regression analysis of number of portals and photoneutron dose, it showed that photoneutron dose significantly increased by 0.373 times in average as the number of portals increased by 1 stage. In conclusion, this study can be expected to be used as a quantitative basic data to select an appropriate IMRT plans regarding photoneutron dose in radiation treatment for prostate cancer.

A Study on lung dose of Intensity modulated and volumetric modulated arc therapy plans using restricted angle of Non-small cell lung cancer (비소세포 폐암의 제한된 각도를 이용한 세기변조와 용적변조회전 방사선치료계획의 폐 선량에 관한 연구)

  • Yeom, Misuk;Lee, Woosuk;Kim, Daesup;Back, Geummun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • Purpose : For non-small cell lung cancer, if the treatment volume is large or the total lung volume is small, and the tumor is located in midline of patient's body, total lung dose tends to increase due to tolerance dose of spinal cord. The purpose of this study is to compare and evaluate the total lung dose of three dimensional conformal radiotherapy(3D CRT), intensity modulated radiotherapy(IMRT) and volumetric modulated arc therapy(VMAT) using restricted angle for non-small cell lung cancer patients. Materials and Methods : The treatment plans for four patients, being treated on TrueBeam STx($Varian^{TM}$, USA) with 10 MV and prescribed dose of 60 Gy in 30 fractions, 3D CRT, restricted angle IMRT and VAMT radiotherapy plans were established. Planning target volume(PTV), dose to total lung and spinal cord were evaluated using the dose volume histogram(DVH). Conformity index(CI), homogeneity index(HI), Paddick's index(PCI) for the PTV, $V_{30}$, $V_{20}$, $V_{10}$, $V_5$, mean dose for total lung and maximum dose for spinal cord was assessed. Results : Average value of CI, HI and PCI for PTV was $0.944{\pm}0.009$, $1.106{\pm}0.027$, $1.084{\pm}0.016$ respectively. $V_{20}$ values from 3D CRT, IMRT and VMAT plans were 30.7%, 20.2% and 21.2% for the first patient, 33.0%, 29.2% and 31.5% for second patient, 51.3%, 34.3% and 36.9% for third patient, finally 56.9%, 33.7% and 40.0% for the last patient. It was noticed that the $V_{20}$ was lowest in the IMRT plan using restricted angle. Maximum dose for spinal cord was evaluated to lower than the tolerance dose. Conclusion : For non-small cell lung cancer, IMRT with restricted angle or VMAT could minimize the lung dose and lower the dose to spinal cord below the tolerance level. Considering PTV coverage and tolerance dose to spinal cord, it was possible to obtain IMRT plan with smaller angle and this could result in lower dose to lung when compared to VMAT.

Computer Assisted EPID Analysis of Breast Intrafractional and Interfractional Positioning Error (유방암 방사선치료에 있어 치료도중 및 분할치료 간 위치오차에 대한 전자포탈영상의 컴퓨터를 이용한 자동 분석)

  • Sohn Jason W.;Mansur David B.;Monroe James I.;Drzymala Robert E.;Jin Ho-Sang;Suh Tae-Suk;Dempsey James F.;Klein Eric E.
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.24-31
    • /
    • 2006
  • Automated analysis software was developed to measure the magnitude of the intrafractional and interfractional errors during breast radiation treatments. Error analysis results are important for determining suitable planning target volumes (PTV) prior to Implementing breast-conserving 3-D conformal radiation treatment (CRT). The electrical portal imaging device (EPID) used for this study was a Portal Vision LC250 liquid-filled ionization detector (fast frame-averaging mode, 1.4 frames per second, 256X256 pixels). Twelve patients were imaged for a minimum of 7 treatment days. During each treatment day, an average of 8 to 9 images per field were acquired (dose rate of 400 MU/minute). We developed automated image analysis software to quantitatively analyze 2,931 images (encompassing 720 measurements). Standard deviations ($\sigma$) of intrafractional (breathing motion) and intefractional (setup uncertainty) errors were calculated. The PTV margin to include the clinical target volume (CTV) with 95% confidence level was calculated as $2\;(1.96\;{\sigma})$. To compensate for intra-fractional error (mainly due to breathing motion) the required PTV margin ranged from 2 mm to 4 mm. However, PTV margins compensating for intefractional error ranged from 7 mm to 31 mm. The total average error observed for 12 patients was 17 mm. The intefractional setup error ranged from 2 to 15 times larger than intrafractional errors associated with breathing motion. Prior to 3-D conformal radiation treatment or IMRT breast treatment, the magnitude of setup errors must be measured and properly incorporated into the PTV. To reduce large PTVs for breast IMRT or 3-D CRT, an image-guided system would be extremely valuable, if not required. EPID systems should incorporate automated analysis software as described in this report to process and take advantage of the large numbers of EPID images available for error analysis which will help Individual clinics arrive at an appropriate PTV for their practice. Such systems can also provide valuable patient monitoring information with minimal effort.

  • PDF

Comparison of Dose Distributions Calculated by Anisotropic Analytical Algorithm and Pencil Beam Convolution Algorithm at Tumors Located in Liver Dome Site (간원개에 위치한 종양에 대한 Anisotropic Analyticalal Algorithm과 Pencil Beam Convolution 알고리즘에 따른 전달선량 비교)

  • Park, Byung-Do;Jung, Sang-Hoon;Park, Sung-Ho;Kwak, Jeong-Won;Kim, Jong-Hoon;Yoon, Sang-Min;Ahn, Seung-Do
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.106-113
    • /
    • 2012
  • The purpose of this study is to evaluate the variation of radiation dose distribution for liver tumor located in liver dome and for the interest organs(normal liver, kidney, stomach) with the pencil beam convolution (PBC) algorithm versus anisotropic Analyticalal algorithm (AAA) of the Varian Eclipse treatment planning system, The target volumes from 20 liver cancer patients were used to create treatment plans. Treatment plans for 10 patients were performed in Stereotactic Body Radiation Therapy (SBRT) plan and others were performed in 3 Dimensional Conformal Radiation Therapy (3DCRT) plan. dose calculation was recalculated by AAA algorithm after dose calculation was performed by PBC algorithm for 20 patients. Plans were optimized to 100% of the PTV by the Prescription Isodose in Dose Calculation with the PBC algorithm. Plans were recalculated with the AAA, retaining identical beam arrangements, monitor units, field weighting and collimator condition. In this study, Total PTV was to be statistically significant (SRS: p=0.018, 3DCRT: p=0.006) between PBC and AAA algorithm. and in the case of PTV, ITV in liver dome, plans for 3DCRT were to be statistically significant respectively (p=0.013, p=0.024). normal liver and kidney were to be statistically significant (p=0.009, p=0.037). For the predictive index of dose variation, CVF ratio was to be statistically significant for PTV in the liver dome versus PTV (SRS r=0.684, 3DCRT r=0.732, p<0.01) and CVF ratio for Tumor size was to be statistically significant (SRS r=-0.193, p=0.017, 3DCRT r=0.237, p=0.023).

Locally Advanced, Unresectable Pancreatic Cancer Treated by Stereotactic Radiation Therapy (국소적으로 진행된, 절제 불가능한 췌장암에서 정위 방사선 치료)

  • Choi Chul-Won;Kim Mi-Sook;Cho Chul-Koo;Yoo Seong-Yul;Yang Kwang-Mo;Yoo Hyung-Jun;Lee Dong-Han;Ji Young-Hoon;Han Chul-Ju;Kim Jin;Kim Young-Han
    • Radiation Oncology Journal
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2006
  • Puroose: In order to find out whether stereotactic radiation therapy (RT) using CyberKnife (CK) could improve survival rate and lower acute toxicity compared to conventional RT. Materials and Methods: From April 2003 through April 2004, 19 patients with Eastern Cooperative Oncology Group (ECOG) performance status ${\leq}3$ and locally advanced pancreas cancer without distant metastasis, evaluated by CT or PET/CT, were included. We administered stereotactic RT consisting of either 33 Gy, 36 Gy or 39 Gy in 3 fractions to 6, 4 and 9 patients, respectively, in an effort to increase the radiation dose step by step, and analyzed the survival rate and gastrointestinal toxicities by the acute radiation morbidity criteria of Radiation Therapeutic Oncology Group (RTOG). Prognostic factors of age, sex, ECOG performance score, chemotherapy, bypass surgery, radiation dose, CA 19-9, planning target volume (PTV), and adjacent organ and vessel invasion on CT scan were evaluated by Log Rank test. Results: The median survival time was 11 months with 1-year survival rate of 36.8%. During follow-up period (range $3{\sim}20$ months, median 10 months), no significant gastrointestinal acute toxicity (RTOG grade 3) was observed. In univariate analysis, age, sex, ECOG performance score, chemotherapy, bypass surgery, radiation dose, CA 19-9 level, and adjacent organ and vessel invasion did not show any significant changes of survival rate, however, patients with PTV (80 cc showed more favorable survival rate than those with PTV>80 cc (p-value<0.05). In multivariate analysis, age younger than 65 years and PTV>80 cc showed better survival rate. Conclusion: In terms of survival, the efficacy of stereotactic radiation therapy using CK was found to be superior or similar to other recent studies achieved with conventional RT with intensive chemotherapy, high dose conformal RT, intraoperative RT (IORT), or intensity modulated RT (IMRT). Furthermore, severe toxicity was not observed. Short treatment time in relation to the short life expectancy gave patients more convenience and, finally, quality of life would be increased. Consequently, this could be regarded as an effective novel treatment modality for locally advanced, unresectable pancreas cancer. PTV would be a helpful prognostic factor for CK.

Dosimetric comparison for Prostate VMAT of weight and photon energy change (전립선 암 입체적세기변조방사선치료 시 체형 및 에너지 변화에 따른 선량 평가)

  • Jo, Guang Sub;Kim, Min Woo;Baek, Min Gyu;Chae, Jong Pyo;Ha, Se Min;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.17-25
    • /
    • 2018
  • Purpose : To compare the radiation doses of prostate cancer patients according to changes in abdominal body shape and energy during Volumetric modulated arc therapy(VMAT). Materials and Methods : Seven patients with prostate cancer were enrolled in this study. VMAT treatment plan was established at 6, 10, and 15 MV while changing from -2.0 cm to 2 cm by 0.5 cm. Conformal index(CI), homogeneous index(HI), $D_{max}$, $D_{95%}$, $D_{50%}$ and $D_{2%}$ of PTV were examined in order to evaluate the change of dose in the target organ according to body shape change. Normal organ of the femoral head, rectum and bladder was analyzed to evaluate dose changes. Results : The dose of $D_{max}$ 6 MV in PTV increased to 107.2 % in 1.0 cm body shape reduction, and 10 MV and 15 MV dose increased to 107.1 % and 107.0 % in 1.5 cm body reduction, respectively. The dose of $D_{50%}$ 6 MV in PTV decreased to 99.64 % in 1.0 cm body shape increase, and in 10 MV and 15 MV dose decreased to 99.79 % and 99.97 % in 1.5 cm body increase, respectively. In 2.0 cm body type increase, the dose was decreased to 99.30 % and 99.52 %, respectively. Doses for rectum and bladder gradually increased with decreasing weight, and dose decreased with decreasing weight. 6 MV, and $V_{70Gy}$ at 10 MV increased from 11.50 % to 12.76 % when the external shape decreased by 2.0 cm. The bladder $V_{70Gy}$ also increased from 14.0 % to 15.2 %. It was also shown that the dose increased as the body weight decreased in the femoral head. Conclusion : In the treatment of VMAT, dose distribution can be changed according to the change of abdominal shape. SSD and CBCT were used to decrease the body shape by more than 1cm or more than 1.0 cm at 6 MV and the body shape by more than 1.5 cm or more than 1.5 cm at 10 MV or 15 MV. It is considered that a new treatment plan should be established through re-simulation.

  • PDF

A study of the plan dosimetic evaluation on the rectal cancer treatment (직장암 치료 시 치료계획에 따른 선량평가 연구)

  • Jeong, Hyun Hak;An, Beom Seok;Kim, Dae Il;Lee, Yang Hoon;Lee, Je hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.171-178
    • /
    • 2016
  • Purpose : In order to minimize the dose of femoral head as an appropriate treatment plan for rectal cancer radiation therapy, we compare and evaluate the usefulness of 3-field 3D conformal radiation therapy(below 3fCRT), which is a universal treatment method, and 5-field 3D conformal radiation therapy(below 5fCRT), and Volumetric Modulated Arc Therapy (VMAT). Materials and Methods : The 10 cases of rectal cancer that treated with 21EX were enrolled. Those cases were planned by Eclipse(Ver. 10.0.42, Varian, USA), PRO3(Progressive Resolution Optimizer 10.0.28) and AAA(Anisotropic Analytic Algorithm Ver. 10.0.28). 3fCRT and 5fCRT plan has $0^{\circ}$, $270^{\circ}$, $90^{\circ}$ and $0^{\circ}$, $95^{\circ}$, $45^{\circ}$, $315^{\circ}$, $265^{\circ}$ gantry angle, respectively. VMAT plan parameters consisted of 15MV coplanar $360^{\circ}$ 1 arac. Treatment prescription was employed delivering 54Gy to recum in 30 fractions. To minimize the dose difference that shows up randomly on optimizing, VMAT plans were optimized and calculated twice, and normalized to the target V100%=95%. The indexes of evaluation are D of Both femoral head and aceta fossa, total MU, H.I.(Homogeneity index) and C.I.(Conformity index) of the PTV. All VMAT plans were verified by gamma test with portal dosimetry using EPID. Results : D of Rt. femoral head was 53.08 Gy, 50.27 Gy, and 30.92 Gy, respectively, in the order of 3fCRT, 5fCRT, and VMAT treatment plan. Likewise, Lt. Femoral head showed average 53.68 Gy, 51.01 Gy and 29.23 Gy in the same order. D of Rt. aceta fossa was 54.86 Gy, 52.40 Gy, 30.37 Gy, respectively, in the order of 3fCRT, 5fCRT, and VMAT treatment plan. Likewise, Lt. Femoral head showed average 53.68 Gy, 51.01 Gy and 29.23 Gy in the same order. The maximum dose of both femoral head and aceta fossa was higher in the order of 3fCRT, 5fCRT, and VMAT treatment plan. C.I. showed the lowest VMAT treatment plan with an average of 1.64, 1.48, and 0.99 in the order of 3fCRT, 5fCRT, and VMAT treatment plan. There was no significant difference on H.I. of the PTV among three plans. Total MU showed that the VMAT treatment plan used 124.4MU and 299MU more than the 3fCRT and 5fCRT treatment plan, respectively. IMRT verification gamma test results for the VMAT plan passed over 90.0% at 2mm/2%. Conclusion : In rectal cancer treatment, the VMAT plan was shown to be advantageous in most of the evaluation indexes compared to the 3D plan, and the dose of the femoral head was greatly reduced. However, because of practical limitations there may be a case where it is difficult to select a VMAT treatment plan. 5fCRT has the advantage of reducing the dose of the femoral head as compared to the existing 3fCRT, without regard to additional problems. Therefore, not only would it extend survival time but the quality of life in general, if hospitals improved radiation therapy efficiency by selecting the treatment plan in accordance with the hospital's situation.

  • PDF

Evaluation of the Positional Uncertainty of a Liver Tumor using 4-Dimensional Computed Tomography and Gated Orthogonal Kilovolt Setup Images (사차원전산화단층촬영과 호흡연동 직각 Kilovolt 준비 영상을 이용한 간 종양의 움직임 분석)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Park, Hee-Chul;Ahn, Jong-Ho;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jin-Sung;Han, Young-Yih;Lim, Do-Hoon;Choi, Doo-Ho
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.155-165
    • /
    • 2010
  • Purpose: In order to evaluate the positional uncertainty of internal organs during radiation therapy for treatment of liver cancer, we measured differences in inter- and intra-fractional variation of the tumor position and tidal amplitude using 4-dimentional computed radiograph (DCT) images and gated orthogonal setup kilovolt (KV) images taken on every treatment using the on board imaging (OBI) and real time position management (RPM) system. Materials and Methods: Twenty consecutive patients who underwent 3-dimensional (3D) conformal radiation therapy for treatment of liver cancer participated in this study. All patients received a 4DCT simulation with an RT16 scanner and an RPM system. Lipiodol, which was updated near the target volume after transarterial chemoembolization or diaphragm was chosen as a surrogate for the evaluation of the position difference of internal organs. Two reference orthogonal (anterior and lateral) digital reconstructed radiograph (DRR) images were generated using CT image sets of 0% and 50% into the respiratory phases. The maximum tidal amplitude of the surrogate was measured from 3D conformal treatment planning. After setting the patient up with laser markings on the skin, orthogonal gated setup images at 50% into the respiratory phase were acquired at each treatment session with OBI and registered on reference DRR images by setting each beam center. Online inter-fractional variation was determined with the surrogate. After adjusting the patient setup error, orthogonal setup images at 0% and 50% into the respiratory phases were obtained and tidal amplitude of the surrogate was measured. Measured tidal amplitude was compared with data from 4DCT. For evaluation of intra-fractional variation, an orthogonal gated setup image at 50% into the respiratory phase was promptly acquired after treatment and compared with the same image taken just before treatment. In addition, a statistical analysis for the quantitative evaluation was performed. Results: Medians of inter-fractional variation for twenty patients were 0.00 cm (range, -0.50 to 0.90 cm), 0.00 cm (range, -2.40 to 1.60 cm), and 0.00 cm (range, -1.10 to 0.50 cm) in the X (transaxial), Y (superior-inferior), and Z (anterior-posterior) directions, respectively. Significant inter-fractional variations over 0.5 cm were observed in four patients. Min addition, the median tidal amplitude differences between 4DCTs and the gated orthogonal setup images were -0.05 cm (range, -0.83 to 0.60 cm), -0.15 cm (range, -2.58 to 1.18 cm), and -0.02 cm (range, -1.37 to 0.59 cm) in the X, Y, and Z directions, respectively. Large differences of over 1 cm were detected in 3 patients in the Y direction, while differences of more than 0.5 but less than 1 cm were observed in 5 patients in Y and Z directions. Median intra-fractional variation was 0.00 cm (range, -0.30 to 0.40 cm), -0.03 cm (range, -1.14 to 0.50 cm), 0.05 cm (range, -0.30 to 0.50 cm) in the X, Y, and Z directions, respectively. Significant intra-fractional variation of over 1 cm was observed in 2 patients in Y direction. Conclusion: Gated setup images provided a clear image quality for the detection of organ motion without a motion artifact. Significant intra- and inter-fractional variation and tidal amplitude differences between 4DCT and gated setup images were detected in some patients during the radiation treatment period, and therefore, should be considered when setting up the target margin. Monitoring of positional uncertainty and its adaptive feedback system can enhance the accuracy of treatments.

The Impact of Bladder Volume on Acute Urinary Toxicity during Radiation Therapy for Prostate Cancer (전립선암의 방사선치료시 방광 부피가 비뇨기계 부작용에 미치는 영향)

  • Lee, Ji-Hae;Suh, Hyun-Suk;Lee, Kyung-Ja;Lee, Re-Na;Kim, Myung-Soo
    • Radiation Oncology Journal
    • /
    • v.26 no.4
    • /
    • pp.237-246
    • /
    • 2008
  • Purpose: Three-dimensional conformal radiation therapy (3DCRT) and intensity-modulated radiation therapy (IMRT) were found to reduce the incidence of acute and late rectal toxicity compared with conventional radiation therapy (RT), although acute and late urinary toxicities were not reduced significantly. Acute urinary toxicity, even at a low-grade, not only has an impact on a patient's quality of life, but also can be used as a predictor for chronic urinary toxicity. With bladder filling, part of the bladder moves away from the radiation field, resulting in a small irradiated bladder volume; hence, urinary toxicity can be decreased. The purpose of this study is to evaluate the impact of bladder volume on acute urinary toxicity during RT in patients with prostate cancer. Materials and Methods: Forty two patients diagnosed with prostate cancer were treated by 3DCRT and of these, 21 patients made up a control group treated without any instruction to control the bladder volume. The remaining 21 patients in the experimental group were treated with a full bladder after drinking 450 mL of water an hour before treatment. We measured the bladder volume by CT and ultrasound at simulation to validate the accuracy of ultrasound. During the treatment period, we measured bladder volume weekly by ultrasound, for the experimental group, to evaluate the variation of the bladder volume. Results: A significant correlation between the bladder volume measured by CT and ultrasound was observed. The bladder volume in the experimental group varied with each patient despite drinking the same amount of water. Although weekly variations of the bladder volume were very high, larger initial CT volumes were associated with larger mean weekly bladder volumes. The mean bladder volume was $299{\pm}155\;mL$ in the experimental group, as opposed to $187{\pm}155\;mL$ in the control group. Patients in experimental group experienced less acute urinary toxicities than in control group, but the difference was not statistically significant. A trend of reduced toxicity was observed with the increase of CT bladder volume. In patients with bladder volumes greater than 150 mL at simulation, toxicity rates of all grades were significantly lower than in patients with bladder volume less than 150 mL. Also, patients with a mean bladder volume larger than 100 mL during treatment showed a slightly reduced Grade 1 urinary toxicity rate compared to patients with a mean bladder volume smaller than 100 mL. Conclusion: Despite the large variability in bladder volume during the treatment period, treating patients with a full bladder reduced acute urinary toxicities in patients with prostate cancer. We recommend that patients with prostate cancer undergo treatment with a full bladder.

Evaluation of Ovary Dose of Childbearing age Woman with Breast cancer in Radiation therapy (가임기 여성의 방사선 치료 시 난소 선량 평가)

  • Park, Sung Jun;Lee, Yeong Cheol;Kim, Seon Myeong;Kim, Young Bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.145-153
    • /
    • 2021
  • Purpose: The purpose of this study is to evaluate the ovarian dose during radiation therapy for breast cancer in women of childbearing age through an experiment. The ovarian dose is evaluated by comparing and analyzing between the calculated dose in the treatment planning system according to the treatment technique and the measured dose using a thermoluminescence dosimeter (TLD). The clinical usefulness of lead (Pb) apron is investigated through dose analysis according to whether or not it is used. Materials and Methods: Rando humanoid phantom was used for measurement, and wedge filter radiation therapy, 3D conformal radiation therapy, and intensity modulated radiation therapy were used as treatment techniques. A treatment plan was established so that 95% of the prescribed dose could be delivered to the right breast of the Rando humanoid phantom 3D image obtained using the CT simulator. TLD was inserted into the surface and depth of the virtual ovary of the Rando hunmanoid phantom and irradiated with radiation. The measurement location was the center of treatment and the point moved 2 cm to the opposite breast from the center of the Rando hunmanoid phantom, 5cm, 10cm, 12.5cm, 15cm, 17.5cm, 20cm from the boundary of the right breast to the center of treatment and downward, and the surface and depth of the right ovary. Measurements were made at a total of 9 central points. In the dose comparison of treatment planning systems, two wedge filter treatment techniques, three-dimensional conformal radiotherapy, and intensity-modulated radiation therapy were established and compared. Treatments were compared, and dose measurements according to the use of lead apron were compared and analyzed in intensity-modulated radiation therapy. The measured value was calculated by averaging three TLD values for each point and converting using the TLD calibration value, which was calculated as the point dose mean value. In order to compare the treatment plan value with the actual measured value, the absolute dose value was measured and compared at each point (%Diff). Results: At Point A, the center of treatment, a maximum of 201.7cGy was obtained in the treatment planning system, and a maximum of 200.6cGy was obtained in the TLD. In all treatment planning systems, 0cGy was calculated from Point G, which is a point 17.5cm downward from the breast interface. As a result of TLD, a maximum of 2.6cGy was obtained at Point G, and a maximum of 0.9cGy was obtained at Point J, which is the ovarian dose, and the absolute dose was 0.3%~1.3%. The difference in dose according to the use of lead aprons was from a maximum of 2.1cGy to a minimum of 0.1cGy, and the %Diff value was 0.1%~1.1%. Conclusion: In the treatment planning system, the difference in dose according to the three treatment plans did not show a significant difference from 0.85% to 2.45%. In the ovary, the difference between the Rando humanoid phantom's treatment planning system and the actual measured dose was within 0.9%, and the actual measured dose was slightly higher. This did not accurately reflect the effect of scattered radiation in the treatment planning system, and it is thought that the dose of scattered radiation and the dose taken by CBCT with TLD inserted were reflected in the actual measurement. In dosimetry according to the with or without a lead apron, when a lead apron was used, the closer the distance from the treatment range, the more effective the shielding was. Although it is not clinically appropriate for pregnancy or artificial insemination during radiotherapy, the dose irradiated to the ovaries during treatment is not expected to significantly affect the reproductive function of women of childbearing age after radiotherapy. However, since women of childbearing age have constant anxiety, it is thought that psychological stability can be promoted by presenting the data from this study.