• 제목/요약/키워드: confluent hypergeometric series

검색결과 11건 처리시간 0.02초

Confluent Hypergeometric Distribution and Its Applications on Certain Classes of Univalent Functions of Conic Regions

  • Porwal, Saurabh
    • Kyungpook Mathematical Journal
    • /
    • 제58권3호
    • /
    • pp.495-505
    • /
    • 2018
  • The purpose of the present paper is to investigate Confluent hypergeometric distribution. We obtain some basic properties of this distribution. It is worthy to note that the Poisson distribution is a particular case of this distribution. Finally, we give a nice application of this distribution on certain classes of univalent functions of the conic regions.

A TYPE OF FRACTIONAL KINETIC EQUATIONS ASSOCIATED WITH THE (p, q)-EXTENDED 𝜏-HYPERGEOMETRIC AND CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Khan, Owais;Khan, Nabiullah;Choi, Junesang;Nisar, Kottakkaran Sooppy
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권2호
    • /
    • pp.381-392
    • /
    • 2021
  • During the last several decades, a great variety of fractional kinetic equations involving diverse special functions have been broadly and usefully employed in describing and solving several important problems of physics and astrophysics. In this paper, we aim to find solutions of a type of fractional kinetic equations associated with the (p, q)-extended 𝜏 -hypergeometric function and the (p, q)-extended 𝜏 -confluent hypergeometric function, by mainly using the Laplace transform. It is noted that the main employed techniques for this chosen type of fractional kinetic equations are Laplace transform, Sumudu transform, Laplace and Sumudu transforms, Laplace and Fourier transforms, P𝛘-transform, and an alternative method.

NEW LAPLACE TRANSFORMS FOR THE GENERALIZED HYPERGEOMETRIC FUNCTION 2F2

  • KIM, YONG SUP;RATHIE, ARJUN K.;LEE, CHANG HYUN
    • 호남수학학술지
    • /
    • 제37권2호
    • /
    • pp.245-252
    • /
    • 2015
  • This paper is in continuation of the paper very recently published [New Laplace transforms of Kummer's confluent hypergeometric functions, Math. Comp. Modelling, 55 (2012), 1068-1071]. In this paper, our main objective is to show one can obtain so far unknown Laplace transforms of three rather general cases of generalized hypergeometric function $_2F_2(x)$ by employing generalized Watson's, Dixon's and Whipple's summation theorems for the series $_3F_2$ obtained earlier in a series of three research papers by Lavoie et al. [5, 6, 7]. The results established in this paper may be useful in theoretical physics, engineering and mathematics.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HA

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • 호남수학학술지
    • /
    • 제34권1호
    • /
    • pp.113-124
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_A$.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HB

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제19권2호
    • /
    • pp.137-145
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_B$.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HC

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • 호남수학학술지
    • /
    • 제34권4호
    • /
    • pp.473-482
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeo-metric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_C$.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X8

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • 대한수학회논문집
    • /
    • 제27권2호
    • /
    • pp.257-264
    • /
    • 2012
  • Exton introduced 20 distinct triple hypergeometric functions whose names are $X_i$ (i = 1, ${\ldots}$, 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_0F_1$, $_1F_1$, a Humbert function ${\Psi}_1$, and a Humbert function ${\Phi}_2$. The object of this paper is to present 18 new integral representations of Euler type for the Exton hypergeometric function $X_8$, whose kernels include the Exton functions ($X_2$, $X_8$) itself, the Horn's function $H_4$, the Gauss hypergeometric function $F$, and Lauricella hypergeometric function $F_C$. We also provide a system of partial differential equations satisfied by $X_8$.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X5

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • 호남수학학술지
    • /
    • 제32권3호
    • /
    • pp.389-397
    • /
    • 2010
  • Exton introduced 20 distinct triple hypergeometric functions whose names are Xi (i = 1,$\ldots$, 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_0F_1$, $_1F_1$, a Humbert function $\Psi_2$, a Humbert function $\Phi_2$. The object of this paper is to present 25 (presumably new) integral representations of Euler types for the Exton hypergeometric function $X_5$ among his twenty $X_i$ (i = 1,$\ldots$, 20), whose kernels include the Exton function X5 itself, the Exton function $X_6$, the Horn's functions $H_3$ and $H_4$, and the hypergeometric function F = $_2F_1$.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION $X_2$

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제17권4호
    • /
    • pp.347-354
    • /
    • 2010
  • Exton [Hypergeometric functions of three variables, J. Indian Acad. Math. 4 (1982), 113~119] introduced 20 distinct triple hypergeometric functions whose names are $X_i$ (i = 1, ..., 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_oF_1$, $_1F_1$, a Humbert function ${\Psi}_2$, a Humbert function ${\Phi}_2$. The object of this paper is to present 16 (presumably new) integral representations of Euler type for the Exton hypergeometric function $X_2$ among his twenty $X_i$ (i = 1, ..., 20), whose kernels include the Exton function $X_2$ itself, the Appell function $F_4$, and the Lauricella function $F_C$.