• Title/Summary/Keyword: configuration design

Search Result 3,128, Processing Time 0.025 seconds

Configuration Design, Hot-firing Test and Performance Evaluation of 200 N-Class GCH4/LOx Small Rocket Engine (Part I: A Preliminary Design and Test Apparatus) (200 N급 GCH4/LOx 소형로켓엔진의 형상설계와 성능시험평가 (Part I: 예비설계와 시험장치))

  • Kim, Young Jin;Kim, Min Cheol;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In this study, a configuration design of a CH4/LOx small rocket engine was made and test system was established for the performance evaluation. A coaxial swirl injector was chosen because of its remarkable atomization performance and low combustion instability. Three aspect ratios for the combustion chamber configuration, i.e., 1.5, 1.8, and 2.1 were also set for the comparison of the combustion efficiency. The reliability of the thrust measurement rig was enhanced by pre-and post-calibration process. From the preliminary ground hot-firing test, the measured thrust and specific impulse values were 89.2 N and 181.8 s, respectively, which were 21.6% lower than the ideal values. In addition, the efficiency of characteristic velocity was measured as 84.2%.

Design and Assessment of DC Traction Power Supply System for Light Rail Transit (직류 전기철도 시스템의 변전소 설계 및 평가)

  • Baek, Byung-San;Moon, Jong-Fil;Choi, Joon-Ho;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.86-97
    • /
    • 2006
  • For the design of DC traction power supply system at new Light Rail Transit(LRT) construction, it is very important to determine system configuration, location and power capacity of substation. However, a LRT system consists of a number of subsystems such as train movement, power supply and traction drives, which inevitably contains many complexities and diversities. The objective of this paper is to clarify and systematize the design procedure and its assessment for the electrification system of a LRT line. This paper discusses in detail our approach to system design and its assessment. The whole DC-feeding network configuration, characteristics of a train, and design method of substation arrangements is thoroughly investigated for the design. As a result of the investigations, the design procedure is clarified and systematized and a computer program for the design and evaluation of the system is developed using the most suitable iterative method with nodal equation. To verify the proposed design and its assessment procedure, case studies for the DC traction power supply system of a planed Korean LRT line are performed.

Design of Fastener for Solid Rocket Motor Using Solid CAD System (CAD 시스템에서의 고체추진기관 체결류 설계에 대한 연구)

  • Lee, Kang-Soo;Kim, Won-Hoon;Seok, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.805-811
    • /
    • 2010
  • When we design a product, we spend a considerable amount of time in designing fasteners and their mating parts. Fasteners have special features because of which they are widely used and well standardized. Although we use some equations to design the fasteners, we should select these fasteners from the standardized table. In order to design them quickly using the CAD system, we proceeded as follows. First, we prepared some standardized shapes of fasteners to design them automatically. Next, we built a database of some fasteners such as a tension bolt, lock wire, thread, pin, and snap ring. Then, we used the design equations to quickly and precisely calculate the various parameters. Finally, we used a configuration design method to generate the shapes automatically using the results of the calculation and the values retrieved from the database. We applied this approach to the design of a propulsion structure, and demonstrated that this approach worked well and saved considerable time.

Optimal Design of the Optical Pickup Actuator Coil (광픽업 구동기 코일최적설계)

  • Woo Chul, Kim;Jae Eun, Kim
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1147-1152
    • /
    • 2004
  • The objective of this work is to develop a new design method to find optimal coils, especially the optimal coil configuration of an optical pickup actuator. In designing actuator coils, the developed Lorenz force in the coils along the desired direction should be made as large as possible while forces and torques in other directions should be made as small as possible. The design methodology we are developing is a systematic approach that can generate optimal coil configurations for given permanent magnet configurations. To consider the best coil configuration among all feasible coil configurations, we formulate the design problem as a topology optimization of a coil. The present formulation for coil design is noble in the sense that the existing topology optimization is mainly concerned with the design of yokes and permanent magnets and that the optimization of actuator coils is so far limited within shape or size optimization. Though the present design methodology applies to any problem, the specific design example considered is the design of fine-pattern tracking and focusing coils.

A Case Study of Configuration Strategy and Context in Everyday Artifacts - Concentrated on analysis by Creativity Template Theory and Artifact Context Model - (일상 디자인산물의 구성배치 전략과 맥락에 관한 연구 - 창조성템플릿이론과 산물맥락모델을 이용한 분석을 중심으로 -)

  • Jin Sun-Tai
    • Archives of design research
    • /
    • v.19 no.4 s.66
    • /
    • pp.41-50
    • /
    • 2006
  • It is generally regarded a design system in post-industrial society, which products designed by in-house designers or design consultancy are manufactured in factory and distributed in market for the consumer. Although it is treated an old design system in traditional society, the traces of vernacular design has been remaining in the state of adopted to the periodical needs in these days, also proving the attribute of design culture to constitute human's material environment as well as existing design systems. There were discovered various design artifacts in daily surroundings vary from the established design in several manners, user modifications or manufactures in everyday lives formalized them. It was approached a case study that analyze the changes of artifact configuration and designer/user context and creation process of the non-professional design artifacts, Creativity Template Theory and ACM(Artifact Context Model) have been utilized for the analysis model. From the analysis result, It assume that the everyday artifacts may be ordinary but extra-ordinary including particular ideas and identity represented by everyday designers or users. Beside these characteristics induce the potentiality that reflect on creative motives for the designers or a complementary artifact generator filling up with drawbacks in established design system. The everyday design domain, various explorations and alternatives are made, is seems to be another design practice domain dissimilar to the one in the industry-based design. Moreover it provides an more easily accessability for the approaching user-friendly design, user customization because they conduct the reliable modeling of consumer and end-user. Finally, based on the exploratory study regarding interpretation of context and configuration in the everyday artifacts, new approach for the design process and design education through more detailed cognitive modeling of everyday designers will be a further study.

  • PDF

Aerodynamic Shape Optimization using Discrete Adjoint Formulation based on Overset Mesh System

  • Lee, Byung-Joon;Yim, Jin-Woo;Yi, Jun-Sok;Kim, Chong-Am
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.95-104
    • /
    • 2007
  • A new design approach of complex geometries such as wing/body configuration is arranged by using overset mesh techniques under large scale computing environment. For an in-depth study of the flow physics and highly accurate design, several special overlapped structured blocks such as collar grid, tip-cap grid, and etc. which are commonly used in refined drag prediction are adopted to consider the applicability of the present design tools to practical problems. Various pre- and post-processing techniques for overset flow analysis and sensitivity analysis are devised or implemented to resolve overset mesh techniques into the design optimization problem based on Gradient Based Optimization Method (GBOM). In the pre-processing, the convergence characteristics of the flow solver and sensitivity analysis are improved by overlap optimization method. Moreover, a new post-processing method, Spline-Boundary Intersecting Grid (S-BIG) scheme, is proposed by considering the ratio of cell area for more refined prediction of aerodynamic coefficients and efficient evaluation of their sensitivities under parallel computing environment. With respect to the sensitivity analysis, discrete adjoint formulations for overset boundary conditions are derived by a full hand-differentiation. A smooth geometric modification on the overlapped surface boundaries and evaluation of grid sensitivities can be performed by mapping from planform coordinate to the surface meshes with Hicks-Henne function. Careful design works for the drag minimization problems of a transonic wing and a wing/body configuration are performed by using the newly-developed and -applied overset mesh techniques. The results from design applications demonstrate the capability of the present design approach successfully.

A Survey of Representation Methods of Game Rules in Game Design (게임디자인에서 게임규칙 표현방법 조사연구)

  • Chang, Hee-Dong
    • Journal of Korea Game Society
    • /
    • v.6 no.4
    • /
    • pp.39-45
    • /
    • 2006
  • In game developments, the design results are often modified not only in the design phase but also in the implementation and test phases. The results of game design are consisted of the results of game rule design and the results of game contend design. The results of game rule design should be correctly understood to all the participants, be efficiently managed by the given configuration controls, and be accurately verified. In this study, we carry out a survey of representation methods of game rules in game design. We have the comparison analysis of the written representation, the UML representation, the Petri net representation, and script-language representation methods about the suitability of the representation method for game rule designs. The comparison analysis is about the representation scope, the visual representation, the automated verification, and the configuration management. The analysis results show that the UML representation is the best method but it needs more convenient automated verification method.

  • PDF

Optimization of modular Truss-Z by minimum-mass design under equivalent stress constraint

  • Zawidzki, Machi;Jankowski, Lukasz
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.715-725
    • /
    • 2018
  • Truss-Z (TZ) is an Extremely Modular System (EMS). Such systems allow for creation of structurally sound free-form structures, are comprised of as few types of modules as possible, and are not constrained by a regular tessellation of space. Their objective is to create spatial structures in given environments connecting given terminals without self-intersections and obstacle-intersections. TZ is a skeletal modular system for creating free-form pedestrian ramps and ramp networks. The previous research on TZ focused on global discrete geometric optimization of the spatial configuration of modules. This paper reports on the first attempts at structural optimization of the module for a single-branch TZ. The internal topology and the sizing of module beams are subject to optimization. An important challenge is that the module is to be universal: it must be designed for the worst case scenario, as defined by the module position within a TZ branch and the geometric configuration of the branch itself. There are four variations of each module, and the number of unique TZ configurations grows exponentially with the branch length. The aim is to obtain minimum-mass modules with the von Mises equivalent stress constrained under certain design load. The resulting modules are further evaluated also in terms of the typical structural criterion of compliance.

Drag Reduction Design for a Long-endurance Electric Powered UAV

  • Jin, Wonjin;Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.311-324
    • /
    • 2015
  • This study presents computational analyses for low-drag aerodynamic design that are applied to modify a long-endurance UAV. EAV-2 is a test-bed for a hybrid electric power system (fuel cell and solar cell) that was developed by the Korean Aerospace Research Institute (KARI) for use in future long-endurance UAVs. The computational investigation focuses on designing a wing with a reduced drag since this is the main contributor of the aerodynamic drag. The airfoil and wing aspect ratio of the least drag are defined, the fuselage configuration is modified, and raked wingtips are implemented to further reduce the profile and induced drag of EAV-2. The results indicate that the total drag was reduced by 54% relative to EAV-1, which was a small-sized version that was previously developed. In addition, static stabilities can be achieved in the longitudinal and lateral-directional by this low-drag configuration. A long-endurance flight test of 22 hours proves that the low-drag design for EAV-2 is effective and that the average power consumption is lower than the objective cruise powerof 200 Watts.

Performance Characteristics and Improvement Suggestion of Individual Sewage Treatment in Kyangan Watershed (경안천 유역 소규모 오수처리시설의 처리특성 및 효율개선방안)

  • Jang, Young-ho;Kim, Keug Tae;Jahng, Deok-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.816-821
    • /
    • 2010
  • It has been achieved 109.1 kg/d of BOD reduction that is equivalent to the amount of BOD loading discharged from 21,880 persons and dramatic decrease of the fallout ratio against water quality of effluent, from 42% to 9%, through technical support on ISTPs to be applied by the ISMSGA at the upper area of Geongan river in Yong-In city. It was clearly revealed that the most efficient configuration for ISTP was a series of anaerobic tank, equalization basin, aerobic tank, sedimentation tank, and then effluent tank. Also, the major causes on the fallout ratio of ISTP resulted in the lack of management (67.5%) and imperfect facilities (32.5%). Then, when compared the quantity of water supply with the design capacity of ISTP, the design capacity was estimated as 1.8 or 2.4 folds larger than the real quantity of water supply so that it is essential to punctually consider the key factors such as an estimation methods, the specificity of commission operator and construction by high systematic technologies to improve the water quality for the future.