• Title/Summary/Keyword: conductivity properties

Search Result 3,101, Processing Time 0.028 seconds

Characteristics on the Non-Steady Heal Transfer of the STS 304 Hollow Cylinder (STS 304 중공 원통의 비정상 열전달 특성)

  • Lee, Sang-Chul;Kim, Young-Geun;Shim, Kyu-Jin;Bae, Kang-Youl;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1552-1557
    • /
    • 2004
  • This paper introduced about characteristics on the non-steady heat transfer of STS 304 hollow cylinder, In the non-steady state, the specific heat and conductivity are depended on the temperature variations, and these properties affect to the governing equation on heat conduction. But the most of numerical analysis on heat conduction is assumed to constant properties which is conductivity and specific heat. Assuming that conduction is assumed to constant properties which is conductivity and specific heat. Assuming that the properties are reacted sensitively, the numerical results can have the difference of between constant properties with non-constant properties. The main parameters are specific heat and conductivity. The temperature distributions of the STS 304 hollow cylinder became in steady state after 4 minutes in case of the constant properties. As the conductivity in varied with temperature, the temperature distributions became in steady state after 15 minutes. Therefore, a numerical analysis of the non steady state heat transfer will has to apply that conductivity varied with temperature.

  • PDF

Influence of P and Mg Additions on the Mechanical Properties and Electrical Conductivity of Cu-Sn Based Alloys (Cu-Sn계 합금의 기계적 성질과 전기전도도에 미치는 P 및 Mg 첨가의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ki-Tae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.6
    • /
    • pp.318-322
    • /
    • 2007
  • The high electrical conductivity Cu-0.15% Sn alloys containing various P contents, and the high conductivity and high strength Cu-0.1% Sn-0.1%Ag alloys with various Mg/P additions were fabricated and their mechanical properties and electrical conductivity were investigated. The electrical conductivity was generally decreased as the P content was increased where as the hardness and strength was shown to increase. When Mg was added to P-containing Cu alloys, the detrimental effect of P on the conductivity was significantly reduced, and TEM observations indicated that the formation of $Mg_3P_2$ phase is responsible for this result.

Microstructure and Properties of Mg-RE-Zn Alloys for High Conductivity Parts (고전도성 부품용 Mg-RE-Zn계 합금의 미세조직 및 특성)

  • Kim, Jeong-Min;Kim, Nam-Hoon
    • Journal of Korea Foundry Society
    • /
    • v.34 no.5
    • /
    • pp.151-155
    • /
    • 2014
  • The relatively low conductivity of conventional Mg-Al alloys often limits their areas of application. Therefore, several attempts to develop new high-conductivity magnesium alloys have been made recently. In this research, A Ce-rich rare-earth (RE)material and zinc were added to magnesium which contained no aluminum. As the RE and Zn content were increased, both the hardness and tensile strength were gradually increased, despite the fact that the electrical conductivity decreased slightly. The effects of an aging treatment on the conductivity and mechanical properties of Mg-RE-Zn alloys were also investigated. The electrical conductivity did not change according to the heat treatment conditions; however, the mechanical properties could be enhanced by proper aging heat treatments.

Determination of Relationship between Thermal and Mechanical Properties of Wood Material

  • Ozcan, Cemal;Korkmaz, Mustafa
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.408-417
    • /
    • 2019
  • Non-destructive test techniques are becoming increasingly important for assessment and maintenance. These techniques are very useful for assessment of materials such as wood, whose performance can vary considerably depending on the conditions of use. It is possible to estimate some mechanical properties of a material by determining the movement of energy through the material with the help of these techniques. In this study, it was investigated whether the wood material could be tested nondestructively by the heat energy produced by a source. The correlations between the thermal conductivity and mechanical properties of Scots pine (Pinus sylvestris L.) and sessile oak (Quercus petraea L.) woods were investigated. The thermal conductivity (TC), density, modulus of rupture (MOR), compression strength (CS), and modulus of elasticity (MOE) values of samples were measured according to the related standards and these values were correlated with each other. The linear and multiple regression tests were employed to determine the correlation between thermal conductivity and mechanical properties. The results showed that there is a very strong correlation between thermal conductivity and both density and MOR values. However, the correlations between TC and both MOE and CS were moderate. The results of this study suggest that the thermal conductivity value can be used to estimate the density and some mechanical properties of wood.

Correlating the hydraulic conductivities of GCLs with some properties of bentonites

  • Oren, A. Hakan;Aksoy, Yeliz Yukselen;Onal, Okan;Demirkiran, Havva
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1091-1100
    • /
    • 2018
  • In this study, the relationships between hydraulic conductivity of GCLs and physico-chemical properties of bentonites were assessed. In addition to four factory manufactured GCLs, six artificially prepared GCLs (AP-GCLs) were tested. AP-GCLs were prepared in the laboratory without bonding or stitching. A total of 20 hydraulic conductivity tests were conducted using flexible wall permeameters ten of which were permeated with distilled deionized water (DIW) and the rest were permeated with tap water (TW). The hydraulic conductivity of GCLs and AP-GCLs were between $5.2{\times}10^{-10}cm/s$ and $3.0{\times}10^{-9}cm/s$. The hydraulic conductivities of all GCLs to DIW were very similar to that of GCLs to TW. Then, simple regression analyses were conducted between hydraulic conductivity and physicochemical properties of bentonite. The best correlation coefficient was achieved when hydraulic conductivity was related with clay content (R=0.85). Liquid limit and plasticity index were other independent variables that have good correlation coefficients with hydraulic conductivity (R~0.80). The correlation coefficient with swell index is less than other parameters, but still fairly good (R~0.70). In contrast, hydraulic conductivity had poor correlation coefficients with specific surface area (SSA), smectite content and cation exchange capacity (CEC) (i.e., R < 0.5). Furthermore, some post-test properties of bentonite such as final height and final water content were correlated with the hydraulic conductivity as well. The hydraulic conductivity of GCLs had fairly good correlation coefficients with either final height or final water content. However, those of AP-GCLs had poor correlations with these variables on account of fiber free characteristics.

Computational Simulations of Thermoelectric Transport Properties

  • Ryu, Byungki;Oh, Min-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.273-281
    • /
    • 2016
  • This review examines computational simulations of thermoelectric properties, such as electrical conductivity, Seebeck coefficient, and thermal conductivity. With increasing computing power and the development of several efficient simulation codes for electronic structure and transport properties calculations, we can evaluate all the thermoelectric properties within the first-principles calculations with the relaxation time approximation. This review presents the basic principles of electrical and thermal transport equations and how they evaluate properties from the first-principles calculations. As a model case, this review presents results on $Bi_2Te_3$ and Si. Even though there is still an unsolved parameter such as the relaxation time, the effectiveness of the computational simulations on the transport properties will provide much help to experimental scientist researching novel thermoelectric materials.

Thermo-electrical properties of randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Supriya, N.
    • Carbon letters
    • /
    • v.22
    • /
    • pp.25-35
    • /
    • 2017
  • The aim of the work was to investigate the thermo-electrical properties of low cost and rapidly produced randomly oriented carbon/carbon (C/C) composite. The composite body was fabricated by combining the high-pressure hot-pressing (HP) method with the low-pressure impregnation thermosetting carbonization (ITC) method. After the ITC method step selected samples were graphitized at $3000^{\circ}C$. Detailed characterization of the samples' physical properties and thermal properties, including thermal diffusivity, thermal conductivity, specific heat and coefficient of thermal expansion, was carried out. Additionally, direct current (DC) electrical conductivity in both the in-plane and through-plane directions was evaluated. The results indicated that after graphitization the specimens had excellent carbon purity (99.9 %) as compared to that after carbonization (98.1). The results further showed an increasing trend in thermal conductivity with temperature for the carbonized samples and a decreasing trend in thermal conductivity with temperature for graphitized samples. The influence of the thickness of the test specimen on the thermal conductivity was found to be negligible. Further, all of the specimens after graphitization displayed an enormous increase in electrical conductivity (from 190 to 565 and 595 to 1180 S/cm in the through-plane and in-plane directions, respectively).

Improvement of Mechanical and Electrical Properties of Poly(ethylene glycol) and Cyanoresin Based Polymer Electrolytes

  • Oh Kyung-Wha;Choi Ji-Hyoung;Kim Seong-Hun
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • Ionic conductivity and mechanical properties of a mixed polymer matrix consisting of poly(ethylene glycol) (PEG) and cyanoresin type M (CRM) with various lithium salts and plasticizer were examined. The CRM used was a copolymer of cyanoethyl pullulan and cyanoethyl poly(vinyl alcohol) with a molar ratio of 1:1, mixed plasticizer was ethylene carbonate (EC) and propylene carbonate (PC) at a volume ratio of 1:1. The conductive behavior of polymer electrolytes in the temperature range of $298{\sim}338\;K$ was investigated. The $PEG/LiClO_4$ complexes exhibited the highest ionic conductivity of ${\sim}10^{-5}S/cm$ at $25^{\circ}C$ with the salt concentration of 1.5 M. In addition, the plasticized $PEG/LiClO_4$ complexes exhibited improvement of ionic conductivity. However, their complexes showed decreased mechanical properties. The improvement of ionic conductivity and mechanical properties could be obtained from the polymer electrolytes by using CRM. The highest ionic conductivity of PEG/CRM/$LiClO_4$/(EC-PC) was $5.33{\time}10^{-4}S/cm$ at $25^{\circ}C$.

Evaluation of Mechanical Compressive Properties of Al-Si-Cu-Mg Alloy Foams Using Electrical Conductivity (전기전도도를 이용한 Al-Si-Cu-Mg 합금 품의 기계적 압축 특성 평가)

  • Lee, Chang-Hun;Kim, Am-Kee;Ha, San;Nahm, Seung-Hoon;Cho, Seong-Seock
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.377-381
    • /
    • 2004
  • Electrical conductivity of Al-Si-Cu-Mg alloy foams of various density produced in powder metallurgical method has been measured using two probe electrical conductivity measurement method. Compressive mechanical properties such as elastic modulus and plastic plateau stress of foams were evaluated from electrical conductivity using power law relation and scaling laws of foam properties. Uni-axial compression test was also performed. Experimentally measured elastic modulus and plastic plateau stress were compared with the values evaluated from electrical conductivity. The computed values were in good agreement with the experimental result.

  • PDF

Effect of open-core screw dislocation on axial conductivity in semiconductor crystals

  • Taira, Hisao;Sato, Motohiro
    • Advances in nano research
    • /
    • v.1 no.3
    • /
    • pp.171-182
    • /
    • 2013
  • The alternating current (AC) conductivity in semiconductor crystals with an open-core screw dislocation is studied in the current work. The screw dislocation in crystalline media results in an effective potential field which affects the electronic transport properties of the system. Therefore, from a technological view point, it is interesting to investigate properties of AC conductivity at frequencies of a few terahertz. To quantify the screw-induced potential effect, we calculated the AC conductivity of dislocated crystals using the Kubo formula. The conductivity showed peaks within the terahertz frequency region, where the amplitude of the AC conductivity was large enough to be measured in experiments. The measurable conductivity peaks did not arise in dislocation-free crystals threaded by a magnetic flux tube. These results imply different conductivity mechanisms in crystals with a screw dislocation than those threaded by a magnetic flux tube, despite the apparent similarity in their electronic eigenstates.