• Title/Summary/Keyword: conductive carbon

Search Result 454, Processing Time 0.023 seconds

Optimization of Platinum amount in Pt/C for PEMFC (PEMFC 용 Pt 담이 촉매의 Pt 담지비에 따른 성능변화)

  • Cho Y.H.;Cho Y.H.;Park H.S.;Sung Y.E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.547-548
    • /
    • 2006
  • This study focuses on a determination of amount of Pt in the Pt/C for catalysts of polymer electrolyte membrane fuel cells (PEMFC). PEMFC offer low weight and high power density and being considered fur automotive and stationary power applications. The PEMFC behavior is quite complex is influenced by several factors, including catalysts and structure of electrode and membrane type. Catalyst of electrode is important factor for PEMFC. One of the obstacles preventing polymer electrolyte membrane fuel cells from commercialization is the high cost of noble metals to be used as catalyst, such as platinum. To effectively use these metals, they have to be will dispersed to small particles on conductive carbon supports. The optimal amount of Pt in Pt/C was investigated by using polarization curves in single cell with $H_2/O_2$ operation.

  • PDF

Development and Performance Evaluation of Polymer Micro-actuator using Segmented Polyurethane and Polymer Composite Electrode (세그먼트화 폴리우레탄을 이용한 고분자 마이크로 액츄에이터의 제작 및 고분자 전극의 상태에 따른 구동성능)

  • Jung Young Dae;Park Han Soo;Jo Nam Ju;Jeong Hae Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.180-187
    • /
    • 2005
  • This paper is focused on the development of the flexible electrode for disc-type polymer actuators using Segmented Polyurethane(SPU). This paper consists of two parts. The one is about the mechanical property such as elastic modulus. these parameters mainly affect behaviors of polymer actuators and the other is about the electro-chemical property such as the surface resistance of the composite electrode affects the strength of electrostatic force, results in the deformation of polymer actuators. The Young's modulus was measured by UTM. As result, by increasing the modulus of a body of polymer actuators, the maximum displacement of polymer actuators are decreased. The surface resistance of the electrode was measured by 4 point probe system. Compared with the conductive silver grease, the displacement of polymer actuators using carbon black(CB) composite electrodes is comparably small but CB composite electrode should be the practical approach for the improvement of the performance of all-solid actuators, compared with another types of electrode materials.

Microwave Absorbance of Polymer Composites Containing SiC Fibers Coated with Ni-Fe Thin Films

  • Liu, Tian;Kim, Sung-Soo;Choi, Woo-cheal;Yoon, Byungil
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.375-378
    • /
    • 2018
  • Conductive and dielectric SiC are fabricated using electroless plating of Ni-Fe films on SiC chopped fibers to obtain lightweight and high-strength microwave absorbers. The electroless plating of Ni-Fe films is achieved using a two-step process of surface sensitizing and metal plating. The complex permeability and permittivity are measured for the composite specimens with the metalized SiC chopped fibers dispersed in a silicone rubber matrix. The original non-coated SiC fibers exhibit considerable dielectric losses. The complex permeability spectrum does not change significantly with the Ni-Fe coating. Moreover, dielectric constant is sensitively increased with Ni-Fe coating, owing to the increase of the space charge polarization. The improvements in absorption capability (lower reflection loss and small matching thickness) are evident with Ni-Fe coating on SiC fibers. For the composite SiC fibers coated with Ni-Fe thin films, a -35 dB reflection loss is predicted at 7.6 GHz with a matching thickness of 4 mm.

Preparation of Honeycomb-patterned Polyaniline-MWCNT/Polystyrene Composite Film and Studies on DC Conductivity

  • Kim, Won-Jung;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2345-2351
    • /
    • 2012
  • Conductive honeycomb-patterned polystyrene (PS) thin films were prepared by the formation of a polyaniline (PANI) thin layer on the surface of the patterned PS thin films using simple one-step chemical oxidative polymerization of aniline. The in situ chemical oxidation polymerization of aniline hydrochloride solution on the patterned structure of the PS films was conducted in the presence of multiwalled carbon nanotubes (MWCNT) to prepare the PANI-MWCNT/PS composite film. The concentration (wt %) of MWCNT was varied in the range of 1%-3% by weight. The dependence of surface morphology of the PANI/PS and PANI-MWCNT/PS composite film to the polymerization time was observed by scanning electron microscopy. The room temperature DC conductivity was obtained by the four-probe technique. The conductivity of the PANI-MWCNT/PS composite film was affected both by the MWCNT concentration and polymerization time. In addition, DC electrical field was loaded during the oxidative polymerization to affect the distribution of the MWCNT included in the composite film, varying the loading voltage in the range of 0.1-3.0 V. The conductivity of the PANI-MWCNT/PS composite film was increased as loading voltage rose. However, this increase stops at a voltage higher than the critical value.

Effect of Area Ratio on Galvanic Corrosion Between Metallic Materials and GECM in 3.5% NaCl Solution (3.5% NaCl 수용액 중에서의 금속과 GECM의 갈바닉 부식에 미치는 면적비의 영향)

  • Kim, Y.S.;Lim, H.K.;Sohn, Y.I.;Yoo, Y.R.;Chang, H.Y.
    • Corrosion Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • Galvanic coupling between GECM(graphite epoxy composite material) and metallic materials can facilitate corrosion of metals and alloys because GECM is noble and electrically conductive. Galvanic corrosion is affected by many factors including metallic materials, area ratio, surface condition, and corrosivity. This work aims to evaluate the effect of area ratio on galvanic corrosion between GECM and several metals. In the case of glavanic coupling of carbon steel and Al to GECM, corrosion rate increased with increasing area ratio. Corrosion rate of sensitized STS 316S stainless steel decreased a little at an area ratio 1:1 but increased at an area ratio 30:1. It is considered to be due to that area ratio affects galvanic corrosion more in less corrosion resistant alloys. However, in case of STS 316 and Ti, galvanic coupling reduces corrosion rate by the formation of passive film.

Characteristics of Transparent Conductive Films of Single-Walled Carbon Nanotubes with Treatment of Surfactants and Nitric Acid

  • Kim, Myeong-Su;Gwak, Jeong-Chun;Lee, Seung-Ho;Lee, Nae-Seong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.32.1-32.1
    • /
    • 2009
  • 현재 ITO를 대체할 재료로 투명 전도성 탄소나노튜브(carbon nanotube, CNT) 필름에 대한 연구가 진행 되고 있다. 이러한 연구에서 특히 CNT 필름의 투과도에 따른 전기저항을 향상시키기 위한 연구가 활발히 진행되고 있다. 본 연구에서는 단일벽 CNT (single-walled CNT)를 여러 가지 계면활성제로 최적 분산시킨 수용액으로부터 제조한 CNT 필름의 투과도에 따른 면 저항 (sheet resistance) 변화를 관찰하였다. 우선 계면활성제로 분산시킨 CNT 수용액을 알루미나 재질의 필터에서 정량적으로 진공 필터링하여 CNT 필름을 제조하였다. 알루미나 필터를 sodium hydroxide (NaOH) 수용액으로 용해시켜 제거함으로써 얻은 CNT 필름을 유리기판 위에 부착시켰다. 필름의 전기저항을 낮추기 위해 유리기판 위에 부착된 CNT 필름을 질산 (HNO3) 용액으로 처리하였다. Scanning electron microscopy, UV-Vis spectroscopy를 이용하여 각각 필름의 형상과 광 투과도를 분석하였고, 4-point probe로 면 저항을 측정하였다. 계면활성제로 분산시킨 CNT 필름 대부분의 면 저항은 질산 처리에 의해 감소하였다. 이는 CNT 표면에 코팅되어 있던 계면활성제가 질산에 의해 제거되었기 때문인 것으로 예상된다. 여러 계면활성제 중 sodium dodecyl benzenesulfonate로 분산시킨 CNT 필름이 산 처리 후에 가장 낮은 면 저항을 보였다. 그리고 Polyvinyl pyrrolidone (PVP)과 cetyltrimethylammonium bromide (CTAB)를 사용하여 제조한 CNT 필름의 면 저항이 가장 뚜렷한 감소를 보였다.

  • PDF

PTC Behavior of Polymer Composites Containing Ionomers upon Electron Beam Irradiation

  • Kim, Jong-Hawk;Cho, Hyun-Nam;Kim, Seong-Hun;Kim, Jun-Young
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.53-62
    • /
    • 2004
  • We have prepared polymer composites of low-density polyethylene (LDPE) and ionomers (Surlyn 8940) containing polar segments and metal ions by melt blending with carbon black (CB) as a conductive filler. The resistivity and positive temperature coefficient (PTC) of the ionomer/LDPE/CB composites were investigated with respect to the CB content. The ionomer content has an effect on the resistivity and percolation threshold of the polymer composites; the percolation curve exhibits a plateau at low CB content. The PTC intensity of the crosslinked ionomer/LDPE/CB composite decreased slightly at low ionomer content, and increased significantly above a critical concentration of the ionomer. Irradiation-induced crosslinking could increase the PTC intensity and decrease the NTC effect of the polymer composites. The minimum switching current (Ι$\sub$trip/) of the polymer composites decreased with temperature; the ratio of Ι$\sub$trip/ for the ionomer/LDPE/CB composite decreased to a greater extent than that of the LDPE/CB composite. The average temperature coefficient of resistance (${\alpha}$$\sub$T/) for the polymer composites increased in the low-temperature region.

A Study on the Capacity Characteristic of $LiFePO_4$ Cathode for Lithium Polymer Batteries according to kinds of the conductive materials (도전재 종류에 따른 리튬폴리머전지용 $LiFePO_4$ 정극활물질의 용량특성의 변화)

  • Jin, En-Mei;Jin, Bo;Li, Hu;Park, Kyung-Hee;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.316-316
    • /
    • 2007
  • 리튬폴리머 전지용 정극활물질인 $LiFePO_4$를 수열법으로 합성하였다. 제조한 정극활물질 $LiFePO_4$는 X-ray 회절분석을 통하여 olivine 구조임을 확인하였다. 전극 제조 시 첨가된 도전재의 종류에 따른 전기화학적 특성변화를 알기 위하여, Acetylene Black, Super-Black, Multi-Walled Carbon Nanotube(MWCNT), SP270을 도전재로 제조된 정극활물질과 PVDF를 결합제로 사용하였다. 셀은 제조된 정극과 고체전해질 $25PVDFLiCIO_4EC_{10}PC_{10}$를 사용하고, 부극은 금속리튬으로 coin 타입의 cell을 조립하여 충방전을 진행하였다. 충방전 진행결과, Multi-Walled Carbon Nanotube(MWCNT)를 도전재로 사용하였을 경우, 초기 방전용량은 94mAh/g, 100cycle 후에는 약 93mAh/g인 기타 도전재를 사용하였을 때보다 안정하고 높은 방전용량을 나타내었다. 이때의 충방전 전류밀도는 0.1mAh/g이고 전압범위 는 2.5~4.3V이었다.

  • PDF

A study of Physically Implanted Surface Islands by direct Nd:YAG Laser Beam Irradiation

  • Oh, Chang-Heon;Cheon, Suyoung;Lim, Changjin;Lee, Jeongjun;Jeon, Jihyun;Kim, Kyoung-Kook;Chung, Chan-Moon;Cho, Soohaeng
    • Applied Science and Convergence Technology
    • /
    • v.26 no.4
    • /
    • pp.66-69
    • /
    • 2017
  • Physically implanted surface islands of Nano Carbon Tube (NCT) and ${\alpha}-F_2O_3$ particles have been produced on Al-doped ZnO (AZO)/glass surfaces by simple and direct ND:YAG laser beam irradiation. Sheet resistance of the reconstructed surface increased by about 3.6% of over AZO. Minimal surface damage can be repaired by ND:YAG laser beam irradiation in conjunction with proper impurities. Implanted islands of NCT, which are considered to be a good conductive impurity, on AZO increased the sheet resistance by about 1.8%, while implanted islands of ${\alpha}-F_2O_3$, an insulating impurity, on AZO increased sheet resistance by about 129% compared with a laser beam treated AZO. This study provides insight regarding surface implantations of nanowires and micro-circuits, doping effects for semiconductors and optical devices, surface area and impurity effects for catalysis.

Simple Synthesis of SiOx by High-Energy Ball Milling as a Promising Anode Material for Li-Ion Batteries

  • Sung Joo, Hong;Seunghoon, Nam
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.445-453
    • /
    • 2022
  • SiOx was prepared from a mixture of Si and SiO2 via high-energy ball milling as a negative electrode material for Li-ion batteries. The molar ratio of Si to SiO2 as precursors and the milling time were varied to identify the synthetic condition that could exhibit desirable anode performances. With an appropriate milling time, the material showed a unique microstructure in which amorphous Si nanoparticles were intimately embedded within the SiO2 matrix. The interface between the Si and SiO2 was composed of silicon suboxides with Si oxidation states from 0 to +4 as proven by X-ray photoelectron spectroscopy and electrochemical analysis. With the addition of a conductive carbon (Super P carbon black) as a coating material, the SiOx/C manifested superior specific capacity to a commercial SiOx/C composite without compromising its cycle-life performance. The simple mechanochemical method described in this study will shed light on cost-effective synthesis of high-capacity silicon oxides as promising anode materials.