• 제목/요약/키워드: conductive adhesive

검색결과 117건 처리시간 0.031초

플립칩 본딩용 접착제의 속경화 거동 연구 (Study on the Scap-cure Behavior of Adhesive for Flip-chip Bonding)

  • 이준식;민경은;김목순;;김준기
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.78-78
    • /
    • 2010
  • 모바일 정보통신기기를 중심으로 패키지의 초소형화, 고집적화를 위해 플립칩 공법의 적용이 증가되고 있고 있으며 접속피치의 미세화에 따라 솔더 및 언더필을 사용하는 C4 공법보다 ACA(Anisotropic Conductive Adhesive), NCA (Non-conductive Adhesive) 등의 접착제를 이용하는 칩본딩 공법에 대한 요구가 증가하고 있다. 특히, NCA 공법의 경우 산업 현장의 대량생산에 대응하기 위해서는 접착제의 속경화 특성이 요구되어 진다. 일반적으로 접착제의 경화거동은 DSC(Differential Scanning Calorimeter)를 사용해 확인하지만, 수초 이내에 경화되는 접착제의 경우는 적용되기 어렵다. 본 연구에서는 이러한 전자패키지용 접착제의 속경화 거동을 효과적으로 평가할 수 있는 방법을 조사 하였다. 실험에서 사용된 접착제는 에폭시계 레진 기반에 이미다졸계 경화제를 사용한 기본적인 포뮬레이션을 사용하였고, 경화시간은 160^{\circ}C에서 1분 이내에 경화되는 특성을 가지고 있다. 경화 거동을 확인하기 위해서 isothermal DSC와 DEA(Dielectric Analysis)의 두가지 방법을 사용해 비교하였다. 두 실험 방법 모두 $160^{\circ}C$를 유지하며 경화 거동을 확인하였고, DoC(Degree of Cure)의 측정오차를 비교 분석하였다. DEA는 이온 모빌리티 변화에 따른 유전손실율을 측정하는 방법으로 80~90% 이후의 경화도는 측정되지 않았지만, 수초 이내에 경화되는 속경화 특성을 평가하기에 적합한 것으로 확인되었다.

  • PDF

Energy Efficiency Improvement of Vanadium Redox Flow Battery by Integrating Electrode and Bipolar Plate

  • Kim, Min-Young;Kang, Byeong-Su;Park, Sang-Jun;Lim, Jinsub;Hong, Youngsun;Han, Jong-Hun;Kim, Ho-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권3호
    • /
    • pp.330-338
    • /
    • 2021
  • An integral electrode-bipolar plate assembly, which is composed of electrode, conductive adhesive film (CAF) and bipolar plate, has been developed and evaluated for application with a vanadium redox flow battery (VRB) to decrease contact resistance between electrode and bipolar plate. The CAF, made of EVA (ethylene-vinyl-acetate) material with carbon black or CNT (Carbon Nano Tube), is applied between the electrode and the bipolar plate to enable an integral assembly by adhesion. In order to evaluate the integral assembly of VRB by adhesive film, the resistivity of integral assembly and the performance of single cell were investigated. Thus, it was verified that the integral assembly is applicable to redox flow battery. Through resistance and contact resistance of bare EVA and CAF films on bipolar plate were changed. Among the adhesive films, CAF film coated with carbon black showed the lowest value in through resistance, and CAF film coated with CNT showed the lowest value in contact resistance, respectively. The efficiency of VRB single cell was improved by applying CAF films coated with carbon black and CNT, resulting in the reduced overvoltage in charging process. Therefore, the energy efficiency of both CAF films, about 84%, were improved than that of blank cell, about 79.5 % under current density at 40 mA cm-2. The energy efficiency of the two cells were similar, but carbon black coated CAF improved the coulomb efficiency and CNT coated CAF improved the voltage efficiency, respectively.

평판디스플레이를 위한 열압착법을 이용한 이방성 도전성 필름 접합 (Thermocompression Anisothropic Conductive Films(ACFs) bonding for Flat Panel Displays(FPDs) Application)

  • 박진석;조일제;신영의
    • 한국전기전자재료학회논문지
    • /
    • 제22권3호
    • /
    • pp.199-204
    • /
    • 2009
  • The effect of temperature on ACF thermocompression bonding for FPD assembly was investigated, It was found that Au bumps on driver IC's were not bonded to the glass substrate when the bonding temperature was below $140^{\circ}C$ so bonds were made at temperatures of $163^{\circ}C$, $178^{\circ}C$ and $199^{\circ}C$ for further testing. The bonding time and pressure were constant to 3 sec and 3.038 MPa. To test bond reliability, FPD assemblies were subjected to thermal shock storage tests ($-30^{\circ}C$, $1\;Hr\;{\leftrightarrow}80^{\circ}C$, 1 Hr, 10 Cycles) and func! tionality was verified by driver testing. It was found all of FPDs were functional after the thermal cycling. Additionally, Au bumps were bonded using ACF's with higher conductive particle densities at bonding temperatures above $163^{\circ}C$. From the experimental results, when the bonding temperature was increased from $163^{\circ}C$ to $199^{\circ}C$, the curing time could be reduced and more conductive particles were retained at the bonding interface between the Au bump and glass substrate.

Improvement in Interfacial Performances of Silicone Rubber by Oxygen Plasma Treatment

  • Lee, Ki-Taek;Seo, Yu-Jin;Huh, Chang-Su
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.232-233
    • /
    • 2005
  • The Surface of semi-conductive silicone rubber was treated by oxygen plasma to improve adhesion and electric performance in joints between insulating and semi-conductive silicone materials. Surface characterizations were assessed using contact angle measurement and Fourier transform infrared spectroscope (FTIR). Adhesion level was understood from T-peel tests between plasma treated semi-conductive and insulating material. Electrical breakdown strength was measured to understand the charge of electrical performance. From the results, the oxygen plasma treatment produces a significant increase in function group of containing oxygen which can be mainly ascribed to the creation of carbonyl groups on the silicone surface from the strength were improved. Therefore it is concluded then plasma treatment leads to decrease voids originating form poor adhesive, and the improve the adhesion in silicone interface. So we could obtain higher electrical design level of silicone material used for electrical apparatus using oxygen plasma treatment.

  • PDF

알루미나와 흑연을 포함하는 열전도성 아크릴 점착제의 연구 (A Study on Thermal Conductive Acrylic Pressure Sensitive Adhesive with Alumina and Graphite)

  • 오지환;장선호;유성식;조을룡
    • 반도체디스플레이기술학회지
    • /
    • 제16권3호
    • /
    • pp.93-98
    • /
    • 2017
  • 2-Ethylhexyl acrylate, butyl acrylate, methyl methacrylate, and 2-hydroxyethyl methacrylate were polymerized to synthesize acrylic pressure sensitive adhesive (PSA). Alumina and graphite as a filler were added to acrylic PSA to give thermal conductivity. In case of addition of both graphite and alumina, the thermal conductivity of PSA was increased compared with alumina alone due to enhancement of contact between two fillers followed by increasing thermal path in PSA matrix.

  • PDF

머신비전 기반 ACF 본딩 기법 개발 (Development of a Method for ACF Bonding Based on Machine Vision)

  • 이석원
    • 문화기술의 융합
    • /
    • 제4권3호
    • /
    • pp.209-212
    • /
    • 2018
  • 이방성 도전필름(ACF)을 사용한 본딩은 납땜이 용이하지 않은 이질적인 소재 간 미세 접합을 형성하는데 널리 사용되어진다. 성공적인 ACF 본딩 구현을 위한 3가지 제한조건이 존재한다. 본딩 접촉점은 설정된 작업 시간동안 적절한 압력과 온도를 유지한 헤드에 의해서 압착되어야 한다. 본 논문에서는 머신 비전을 기반으로 한 ACF 본딩기법을 제안하고 실험을 통해 검증한다. 시스템은 본딩 작업대 상의 PCB 위치 및 방향을 계산하고 헤드가 압착되어야 하는 최적의 접촉점을 결정한다. 제안한 시스템이 접촉면 상의 헤드 평탄도를 보장함으로써 접착력을 향상시킬 수 있음을 실험결과를 통해 보여준다.

전도성 고분자를 이용한 전자파 차폐효과의 연구 (A Study on the Electromagnetic shielding Effectiveness Using Conductive Polymers)

  • 하남규;이보현;김태영;김종은;서광석
    • 한국전기전자재료학회논문지
    • /
    • 제14권3호
    • /
    • pp.207-214
    • /
    • 2001
  • The conductive polymers, polyaniline (PANI) emeralidin base and 3,4-polyethylene dioxythiophene(PEDOT) were synthesized and coated on the PET film dealt with acryl type primer to study the electromagnetic shielding effectiveness. When both PANI and PEDOT were coated on the PET film dealt with acryl type priemer, their surface properties such as he adhesive increased. For PANI, when blended with the binder such as PMMA, it adhesive and surface hardness increased, too. The visible light transmittance decreased, while the electromagnetic shielding effectiveness increased, when coated thickness of PANI and PEDOT increased. For PANI, the electromagnetic shielding effectiveness increased as its surface resistance decreased. For PANI, when the surface resistance was 140 Ω/$\square$, the shielding effectiveness was found to be 11 dB in the far field, and 13 dB in the near field at 1 GHz. For PEDOT, when the surface resistance was 200 Ω/$\square$, the shielding effectiveness was found to be 3 dB in the far field, and 7dB in the near field.

  • PDF

압전기법을 이용한 복합재료 손상모니터링의 가능성에 관한 연구 (Feasibility Study of the Damage Monitoring for Composite Materials by the Piezoelectric Method)

  • 황희윤
    • 대한기계학회논문집A
    • /
    • 제32권11호
    • /
    • pp.918-923
    • /
    • 2008
  • Since crack detection for laminated composites in-service is effective to improve the structural reliability of laminated composites, it have been tried to detect cracks of laminated composites by various nondestructive methods. An electric potential method is one of the widely used approaches for detection of cracks for carbon fiber composites, since the electric potential method adopts the electric conductive carbon fibers as reinforcements and sensors and the adoption of carbon fibers as sensors does not bring strength reduction induced by embedding sensors into the structures such as optical fibers. However, the application of the electric method is limited only to electrically conductive composite materials. Recently, a piezoelectric method using piezoelectric characteristics of epoxy adhesives has been successfully developed for the adhesive joints because it can monitor continuously the damage of adhesively bonded structures without producing any defects. Polymeric materials for the matrix of composite materials have piezoelectric characteristics similarly to adhesive materials, and the fracture of composite materials should lead to the fracture of polymeric matrix. Therefore, it seems to be valid that the piezoelectric method can be applied to monitoring the damage of composite materials. In this research, therefore, the feasibility study of the damage monitoring for composite materials by piezoelectric method was conducted. Using carbon fiber epoxy composite and glass fiber composite, charge output signals were measured and analyzed during the static and fatigue tests, and the effect of fiber materials on the damage monitoring of composite materials by the piezoelectric method was investigated.