• Title/Summary/Keyword: conductive adhesive

Search Result 117, Processing Time 0.02 seconds

Output Improvement of Two-dimensional Audio Actuators by Corona Surface Treatments to Increase Adhesive Properties of Piezoelectric Materials (코로나 표면 처리의 접착력 향상에 의한 이차원 오디오 시스템의 출력 개선)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.91-97
    • /
    • 2012
  • Recently, the performances of electrical and electronic devices are improving while the sizes are becoming smaller. As sound-generating systems, the two-dimensional speakers have been developed in place of conventional three-dimensional ones. Piezoelectric materials show the mechanical vibrations due to the voltage applied from outside the materials. The early film speakers had a limitations of output power in that it was not easy to make the conducting macromolecular films on the surfaces of the materials due to the internal chemical properties of materials. We have adopted the corona surface treatment in order to improve the output characteristics by increasing the adhesion of the coating material on to the surface of the center material of piezo film. The results showed the improvement of output power in the wider range of operating frequencies.

Fabrication of Series Connected c-Si Solar Strap Cells for the See-through Type Photovoltaic Modules (See-through 형태의 투광형 태양광 모듈 제조를 위한 직렬접합형 스트랩 제조 기술)

  • Min-Joon Park;Sungmin Youn;Minseob Kim;Eunbi Lee;Kiseok Jeon;Chaehwan Jeong
    • Current Photovoltaic Research
    • /
    • v.11 no.4
    • /
    • pp.114-117
    • /
    • 2023
  • Transparent Photovoltaic (PV) modules have recently been in the spotlight because they can be applied to buildings and vehicles. However, crystalline silicon (c-Si) solar modules, which account for about 90% of the PV module market, have the disadvantage of applying transparent PV modules due to their unique opacity. Recently, a see-through type PV module using a crystalline silicon solar strap has been developed. However, there is a problem due to a decrease in aesthetics due to the metal ribbon in the center of the see-through type PV module and difficulty bonding the metal ribbon due to the low voltage output of the strap. In this study, to solve this problem, we developed a fabrication process of series connected c-Si solar strap cells using the c-Si solar cells. We succeeded in fabricating a series connected strap with a width of 2-10 mm, and we plan to manufacture an aesthetic see-through type c-Si PV module.

Interfacial Evaluation and Microfailure Sensing of Nanocomposites by Electrical Resistance Measurements and Wettability (전기저항측정법 및 젖음성을 이용한 나노복합재료의 미세파손 감지능 및 계면물성 평가)

  • Park, Joung-Man;Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.138-144
    • /
    • 2017
  • Damage sensing of polymer composite films consisting of poly(dicyclopentadiene) p-DCPD and carbon nanotube (CNT) was studied experimentally. Only up to 1st ring-opening polymerization occurred with the addition of CNT, which made the modified film electrically conductive, while interfering with polymerization. The interfacial adhesion of composite films with varying CNT concentration was evaluated by measuring the wettability using the static contact angle method. 0.5 wt% CNT/p-DCPD was determined to be the optimal condition via electrical dispersion method and tensile test. Dynamic fatigue test was conducted to evaluate the durability of the films by measuring the change in electrical resistance. For the initial three cycles, the change in electrical resistance pattern was similar to the tensile stress-strain curve. The CNT/p-DCPD film was attached to an epoxy matrix to demonstrate its utilization as a sensor for fracture behavior. At the onset of epoxy fracture, electrical resistance showed a drastic increase, which indicated adhesive fracture between sensor and matrix. It leads to prediction of crack and fracture of matrix.

A Comparison Analysis on the Efficiency of Solar Cells of Shingled Structure with Various ECA Materials (다양한 ECA 소재를 활용한 shingled 구조의 태양전지 효율 비교 분석)

  • Jang, Jae Joon;Park, Jeong Eun;Kim, Dong Sik;Choi, Won Seok;Lim, Donggun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • Modules using 6 inch cells have problems with loss due to empty space between cells. To solve this problem made by shingled structure which can generate more power by utilizing empty space by increasing the voltage level than modules made in 6inch cell. Thus, in this paper, the c-Si cutting cells were produced using nanosecond green laser, and then the ECA was sprayed and cured to perform cutting cell bonding. Three types of ECA materials (B1, B2, B3) with Ag as the main component were used, and experimental conditions varied from 5 to 120 seconds of curing time, 130 to $210^{\circ}C$ of curing temperature, and 1 to 3 of curing numbers. As a results of experiments varying curing time, B1 showed efficiency 19.88% in condition of 60 seconds, B2 showed efficiency 20.15% in 90 seconds, and B3 showed efficiency 20.27% in 60 seconds. In addition, experiments with varying curing temperature, It was confirmed highest efficiency that 20.04% in condition of $170^{\circ}C$ with B1, 20.15% in condition of $150^{\circ}C$ with B2, 20.27% in condition of $150^{\circ}C$ with B3. These are because the Ag particles are densely formed on the surface to make the conduction path. After optimizing the conditions of temperature and curing time, the secondary-tertiary curing experiments were carried out. as the structural analysis, conditions of secondary-tertiary curing showed cracks that due to damp heat aging. As a result, it was found that the ECA B3 had the highest efficiency of 20.27% in condition of 60 seconds of curing time, $150^{\circ}C$ of curing temperature, and single number of curing, and that it was suitable for the manufacture of Solar cell of shingled structure rather than ECA B1 and B2 materials.

Effect of Amino Modified Siloxanes with Two Different Molecular Weights on the Properties of Epoxy Composites for Adhesives for Micro Electronics (전자소재 접착제용 에폭시에 두 종의 다른 당량수를 갖는 아미노 변성 실록산이 미치는 영향)

  • Yu, Kihwan;Kim, Daeheum
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.104-108
    • /
    • 2011
  • In the non-conductive adhesives (NCAs) for adhesion of micro electro mechanical system (MEMS), there are some problems such as delamination and cracking resulting from the large differences of coefficients of thermal expansion (CTE) between NCAs and substrates. So, the addition of inorganic particles such as silica and nano clay to the CTEs composit have been applied to reduce the CTEs of the adhesives. Additions of the flexibilizers such as siloxanes have also been performed to improve the flexibility of epoxy composite. Amino modified siloxane (AMSs) were used to improve compatibility between epoxy and siloxane. In this study, glass transition temperatures (Tg) and moduli of those composites were measured to confirm the effects of AMS with two different equivalents on thermal/mechanical properties of AMS/epoxy composites. Tg of KF-8010/epoxy composites decreased from 148 to $122^{\circ}C$ and those of X-22-161A/epoxy composites decreased from 148 to $121^{\circ}C$. Moduli of KF-8010/epoxy composites decreased from 2648 to 2143 MPa by adding KF-8010 and moduli of X-22-161A/epoxy composites decreased from 2648 to 2014 MPa. In short, using long Si-O chain AMS leads to a greater decrease in moduli. However, haven't showed significant differences in Tg's.

Nanostructured energy harvesting devices and their applications for IoT sensor networks (나노구조체 에너지 하베스팅 소자와 IoT 센서 네트워크의 융합 연구)

  • Yoon, Chongsei;Jeon, Buil;Yoon, Giwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.719-730
    • /
    • 2021
  • We have demonstrated a sandwich-type ZnO-based piezoelectric energy harvesting nanogenerator, namely ZCZ-NG device, composed of symmetrically stacked layers of ZnO/carbon tape/ZnO structure. Especially, we have adopted a conductive double-sided adhesive carbon tape in an effort to fabricate a high-quality ZCZ-NG device, leading to its superior output performance in terms of the peak-to-peak output voltage. Effects of the device size, ZnO layer thickness, and bending strain rate on the device performance have been investigated by measuring the output voltage. Moreover, to evaluate the effectiveness of the fabricated ZCZ-NG devices, we have experimentally implemented a sensor network testbed which can utilize the output voltages of ZCZ-NG devices. This sensor network testbed consists of several components such as Arduino-based transmitter and receiver nodes, wirelessly transmitting the sensed information of each node. We hope that this research combining the ZnO-based energy harvesting devices and IoT sensor networks will contribute to the development of more advanced energy harvester-driven IoT sensor networks in the future.

Low Cost and High Sensitivity Flexible Pressure Sensor Based on Graphite Paste through Lamination after O2 Plasma Surface Treatment Process (O2 플라즈마 표면 처리 공정 후 라미네이션 공정으로 제작된 흑연 페이스트 기반의 저비용 및 고감도 유연 압력 센서)

  • Nam, Hyun Jin;Kang, Cheol;Lee, Seung-Woo;Kim, Sun Woo;Park, Se-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.21-27
    • /
    • 2022
  • Flexible pressure sensor was developed using low-cost conductive graphite as printed electronics. Flexible pressure sensors are attracting attention as materials to be used in future industries such as medical, games, and AI. As a result of evaluating various electromechanical properties of the printed electrode for flexible pressure sensors, it showed a constant resistance change rate in a maximum tensile rate of 20%, 30° tension/bending, and a simple pulse test. A more appropriate matrix pattern was designed by simulating the electrodes for which this verification was completed. Utilizing the Serpentine pattern, we utilized a process that allows simultaneous fabrication and encapsulation of the matrix pattern. One side of the printed graphite electrode was O2 plasma surface treated to increase adhesive strength, rotated 90 times, and two electrodes were made into one through a lamination process. As a result of pasting the matrix pattern prepared in this way to the wrist pulse position of the human body and proceeding with the actual measurement, a constant rate of resistance change was shown regardless of gender.