• Title/Summary/Keyword: conditionally heteroscedastic time series

Search Result 4, Processing Time 0.016 seconds

JOINT ASYMPTOTIC DISTRIBUTIONS OF SAMPLE AUTOCORRELATIONS FOR TIME SERIES OF MARTINGALE DIFFERENCES

  • Hwang, S.Y.;Baek, J.S.;Lim, K.E.
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.4
    • /
    • pp.453-458
    • /
    • 2006
  • It is well known fact for the iid data that the limiting standard errors of sample autocorrelations are all unity for all time lags and they are asymptotically independent for different lags (Brockwell and Davis, 1991). It is also usual practice in time series modeling that this fact continues to be valid for white noise series which is a sequence of uncorrelated random variables. This paper contradicts this usual practice for white noise. We consider a sequence of martingale differences which belongs to white noise time series and derive exact joint asymptotic distributions of sample autocorrelations. Some implications of the result are illustrated for conditionally heteroscedastic time series.

PRELIMINARY DETECTION FOR ARCH-TYPE HETEROSCEDASTICITY IN A NONPARAMETRIC TIME SERIES REGRESSION MODEL

  • HWANG S. Y.;PARK CHEOLYONG;KIM TAE YOON;PARK BYEONG U.;LEE Y. K.
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.2
    • /
    • pp.161-172
    • /
    • 2005
  • In this paper a nonparametric method is proposed for detecting conditionally heteroscedastic errors in a nonparametric time series regression model where the observation points are equally spaced on [0,1]. It turns out that the first-order sample autocorrelation of the squared residuals from the kernel regression estimates provides essential information. Illustrative simulation study is presented for diverse errors such as ARCH(1), GARCH(1,1) and threshold-ARCH(1) models.

Evidence of Integrated Heteroscedastic Processes for Korean Financial Time Series (국내 금융시계열의 누적(INTEGRATED)이분산성에 대한 사례분석)

  • Park, J.A.;Baek, J.S.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.1
    • /
    • pp.53-60
    • /
    • 2007
  • Conditionally heteroscedastic time series models such as GARCH processes have frequently provided useful approximations to the real aspects of financial time series. It is not uncommon that financial time series exhibits near non-stationary, say, integrated phenomenon. For stationary GARCH processes, a shock to the current conditional variance will be exponentially converging to zero and thus asymptotically negligible for the future conditional variance. However, for the case of integrated process, the effect will remain for a long time, i.e., we have a persistent effect of a current shock on the future observations. We are here concerned with providing empirical evidences of persistent GARCH(1,1) for various fifteen domestic financial time series including KOSPI, KOSDAQ and won-dollar exchange rate. To this end, kurtosis and Integrated-GARCH(1,1) fits are reported for each data.

Cumulative Impulse Response Functions for a Class of Threshold-Asymmetric GARCH Processes

  • Park, J.A.;Baek, J.S.;Hwang, S.Y.
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.255-261
    • /
    • 2010
  • A class of threshold-asymmetric GRACH(TGARCH, hereafter) models has been useful for explaining asymmetric volatilities in the field of financial time series. The cumulative impulse response function of a conditionally heteroscedastic time series often measures a degree of unstability in volatilities. In this article, a general form of the cumulative impulse response function of the TGARCH model is discussed. In particular, We present formula in their closed forms for the first two lower order models, viz., TGARCH(1, 1) and TGARCH(2, 2).