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JOINT ASYMPTOTIC DISTRIBUTIONS OF SAMPLE
AUTOCORRELATIONS FOR TIME SERIES OF
MARTINGALE DIFFERENCES'

S. Y. Hwang?, J. S. BaEk? anDp K. E. Lim?

ABSTRACT

It is well known fact for the iid data that the limiting standard errors of
sample autocorrelations are all unity for all time lags and they are asymptot-
ically independent for different lags (Brockwell and Davis, 1991). It is also
usual practice in time series modeling that this fact continues to be valid for
white noise series which is a sequence of uncorrelated random variables. This
paper contradicts this usual practice for white noise. We consider a sequence
of martingale differences which belongs to white noise time series and derive
ezact joint asymptotic distributions of sample autocorrelations. Some im-
plications of the result are illustrated for conditionally heteroscedastic time
series.
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1. INTRODUCTION

The sample autocorrelation function (ACF) for a given time series plays a
crucial role in identifying an appropriate model for the data. To evaluate the
adequacy of the model, the “residual” is recommended to be carefully examined.
Here the term residual is defined as the difference of observations and the fitted
values obtained after fitting an appropriate model. As discussed by Box and
Pierce (1970), the ACF based on residuals can be used as a useful diagnostic tool.
See also Hwang et al. (1994). For the case of iid data, it is a well known fact that
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the asymptotic variances of sample ACF’s are all unity, and sample ACF’s for
different lags are asymptotically independent (Brockwell and Davis, 1991; Fuller
1996). Also, it has been an usual practice in time series modeling that this fact
is blindly employed for any white noise time series. Here the term “white noise”
refers to a sequence of uncorrelated random variates. In this short paper we
provide a contradiction to this (blind) practice employed for any white noise. We
consider a sequence of martingale differences (MD) with finite fourth moment.
It is noted that MD belongs to white noise time series. Exact joint asymptotic
distributions of sample autocorrelations from MD is derived. It is shown that
asymptotic standard errors of sample ACF is far from unity especially for lower
lags and they are asymptotically dependent for different lags. These findings are
illustrated for conditionally heteroscadstic time series.

2. ASYMPTOTIC DISTRIBUTIONS OF SAMPLE ACF’s rroM MD

Consider the zero mean time series {£;}, and denote by F;_; the o-field gen-
erated by €¢-1,€¢-2,.... It will be assumed that {¢;} forms a MD, i.e., for all
t,

E(et|Ft-1) = 0. (2.1)

It is further assumed that

(C1) {e:} is strictly stationary and ergodic time series with variance o2. Further,
fourth order stationary moment exists, i.e., E(e}) < oo.

If {&;} retains independence structure then {e;} reduces to #id sequence.
A typical example of {g;} featuring non-iid structure is GARCH (generalized
ARCH) time series. See, for instance, Engle (1982) and Bollerslev (1986).

Based on the sample (of size n) {e1,€2,...,6n}, the sample ACF of lag k
denoted by ~.(k) is given by

e(k) = Ck/Co, k=0,1,...,1, (2.2)

where C), represents sample autocovariance of lag k defined by

n—k
Cr =Y (et — &)(etsr — &)/n (2.3)
t=1
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with £ denoting the average of the sample. Fix [ and define
T = vn(¥%(1), -, 7%0)" (2.4)
We now present asymptotic distribution of Tr,.
THEOREM 2.1. Under (C1), as n — 00, we have
T, -2 N(0, %),
where | x | matrix ¥ is given by, fori,j=1,---,1,
i = E(elel_) /o2

and
Tij = E(e—ict—j€r) [0e, i # J.

PRrROOF. The sample ACF for {€1,...,e,} is given by, for k =1,...,1,

ﬁ S F (e — ) ern — &)
L3 (e — )2

Since "7 ; (et — £)%/n and & converge in probability to o2 and zero respectively,

Vnye(k) =

one can write
n—k

1
Vye(k) = 07— Z EtEt+k + 0p(1)
) \/ﬁ t=1

51
= 0, 2% Z€t€t_k + Op(].),

t=1
where in the second equality the summation actually runs from ¢t = k + 1 to n.
However we will use > ;. ; without affecting the asymptotics. Under (C1), it can
be shown that E(eie;_g|Fi—1) =0, for £ > 1 and E(s?ef_k) < 0o, thus by using
the central limit theorem for stationary martingale differences (Billingsley, 1961),

we have
Vie(k) =5 N0, B(ehe] i)/a?). (2.5)
Now, we derive the joint asymptotic distribution of T, = v/n(v.(1),...,7 (1))
Consider for a = (ay,a2,...,a;), a given real vector, it can be verified via some
algebra
L
V(arre(D) + -+ ae(l)) = Ue_z‘—n Zak etet+k + op(l).
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Also, the RHS of the above equation can be rearranged as
1 { n—k 1 n 4
% ; ak ; Et€t+k = ﬁ ;Et ’; akEi—k + Op(l).

Note that {e; Efc:l axEi—k ) is again a sequence of zero mean martingale differ-
ences. We then have

1 & l
7 Z £t Z AkE—k — N(0,aTa), (2.6)
t=1 k=1

where I' = (I';;) is the ! x | matrix with
Fz'j = E(St_ist_]‘{:‘?). (27)

Therefore, using the Cramer-Wold device (Serfling, 1980), we finally obtain

. d
Tn = vn(ye(1), ..., 7)) — N(0,%),
where X is the [ x | matrix with £;; = o, 4I‘ij, completing the proof. O

REMARK 2.1. For the special case when {e;} is #d, I;; turns out to be unity
and 3;;,% # j, reduces to zero. For the diagonal term X¥;;, a connection to the
squared process {¢2} can be made. It can be verified that

{E@)?
Corr(e?,e2_)) = (S — 1) [W] (2.8)
Consequently, £;; > 1, £; = 1 and E;; < 1 according to Corr(e?,€2_,) is posi-
tive, zero and negative, respectively. For the standard GARCH(p, q) (Bollerslev,
1986), it is seen that the squared process follows ARMA and thus facilitating the
identification of X;;.

3. APPLICATIONS TO GARCH PROCESSES

Consider the following conditionally heteroscedastic time series {e;} specified
by
Et =V ht - €¢, (31)
where {e;} is a sequence of #id random variates with mean zero and unit variance.
Here, h; is reserved for the conditional variance €; of given the past, i.e.,

ht = Var(5t|Ft_1). (32)



SAMPLE AUTOCORRELATIONS FOR MARTINGALE DIFFERENCES 457

We take, for simplicity, ARCH(1) structure for h;. Engle’s ARCH(1) model

is specified by
h: = o + alef_l. (33)
For checking (C1), we note that ARCH(1) is stationary if oy < 1 and E(e) < 0o
if 30 < 1 when {e;} is Gaussian. Utilizing the fact that the squared process

{€?} follows the standard AR(1) model with autoregressive coefficient a;, the
asymptotic variance of sample ACF of lag i is shown to be

Si=1+ (1 _Z_‘Jga%). (3.4)

It is noted for ARCH(1) that X;; converges exponentially to 1 as the lag increases
and hence ¥;; for lower lags rather than higher lags should be carefully handled
for model diagnostic purposes. This argument can be carried over to the GARCH
time series.

Consider the following GARCH(p, q) process given by

ht — yiht—1 — - — Ypht—p = 9 + alsf_l 4+ 4 aqsf_q. (3.5)

The order ¢ is taken to be greater than or equal to p, without loss of generality.
Define 7, = €7 —h;. It is noted that {n;} forms a sequence of martingale differences
with respect to the increasing o-field {F;}. Then, (3.5) can be written in terms
of ARMA(q,p) as

P

(o + yi)er—; = o + 1 — Z'Yjﬂt—j- (3.6)
=1 7=1

M-

ef —

Provided En? < oo, or equivalently, Ecf < oo, (3.6) exhibits a stationary
ARMA(q,p) process. This notion is quite useful in determing the GARCH-
order, say p and ¢, via a stationary ARMA(q,p) theory. Consequently, it has
been a common practice in GARCH modeling for (3.5) to investigate the sample
ACEF of the residual 7j; after fitting the model (3.6) assuming that the asymptotic
variance-covariance matrix, say, A of the sample ACF’s of 7}; be identity matrix.
However, our theorem applied to the MD {m; = &2 — h;} tells us that A may not
be identity matrix and thus A can be refined according to the Theorem 2.1.
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