바젤 위원회는 시장위험의 측정 도구로 Value-at-Risk(VaR)와 expected shortfall(ES)을 사용할 것을 제안하였다. 여러 문헌에서 VaR와 ES의 다양한 추정 방법들이 연구 되었다. 본 연구에서는 준모수적인 방법인 conditional autoregressive value at risk(CAViaR), conditional autoregressive expectile(CARE) 방법들, 그리고 Gaussian 준최대가능도 추정량(QMLE)를 이용한 방법을 사후 검정을 통해서 비교하고자 한다. 각 방법의 타당성을 확인하기 위해서, VaR에 대한 사후 검정은 unconditional coverage(UC)와 conditional coverage(CC) 검정을 사용하고 ES에 대한 검정은 붓스트랩 방법을 사용한다. S&P500 지수와 현대 자동차 주식가격 지수에 대하여 실증 자료 분석이 수행되었다.
This article aimed to introduce 'risk sharing' schemes for pharmaceuticals between drug manufacturers and healthcare payer. Published literature review was undertaken to summarize risk sharing concepts and collect information on existing scheme examples in other countries focusing on new anticancer drugs. Risk sharing schemes could be categorized into health outcomes-based and non-outcomes (financial) based ones. Outcome-based schemes could be broken down into performance-linked reimbursement and conditional coverage. Performance-linked reimbursement can be further broken into outcomes guarantee and pattern or process of care and conditional coverage included coverage with evidence development and conditional treatment continuation schemes. Non-outcome based schemes included market share and price volume at population level, and utilization caps and manufacturer funded treatment initiation at patient level. We reviewed the fifteen examples for anticancer drugs that risk sharing agreements in response to the inherent uncertainties and increased costs of eleven anticancer drugs. Of them, eight cases were coverage with evidence development schemes. The anticancer drugs except bevacizumab and cetuximab were all listed on the national health insurance formulary in Korea, with reimbursement criteria defined on the basis of approved indications and administrations. Risk sharing approach may be a useful tool to ensure values for drug expenditure, but there are a number of concerns such as high administration costs, lack of transparency and conflicts of interest, especially for performance-based health outcomes reimbursement schemes.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권7호
/
pp.3511-3532
/
2019
Coverage-guided fuzzing is an efficient solution that has been widely used in software testing. By guiding fuzzers through the coverage information, seeds that generate new paths will be retained to continually increase the coverage. However, we observed that most samples follow the same few high-frequency paths. The seeds that exercise a high-frequency path are saved for the subsequent mutation process until the user terminates the test process, which directly affects the efficiency with which the low-frequency paths are tested. In this paper, we propose a fuzzing solution, ER-Fuzz, that truncates the recording of a high-frequency path to influence coverage. It utilizes a deep learning-based classifier to locate the high and low-frequency path transfer points; then, it instruments at the transfer position to promote the probability low-frequency transfer paths while eliminating subsequent variations of the high-frequency path seeds. We implemented a prototype of ER-Fuzz based on the popular fuzzer AFL and evaluated it on several applications. The experimental results show that ER-Fuzz improves the coverage of the original AFL method to different degrees. In terms of the number of crash discoveries, in the best case, ER-Fuzz found 115% more unique crashes than did AFL. In total, seven new bugs were found and new CVEs were assigned.
Communications for Statistical Applications and Methods
/
제17권6호
/
pp.909-916
/
2010
A trend in software reliability engineering is to take into account the coverage growth behavior during testing. A coverage growth function that represents the coverage growth behavior is an essential factor in software reliability models. When multiple competitive coverage growth functions are available, there is a need for a criterion to select the best coverage growth functions. This paper proposes a selection criterion based on the prediction error. The conditional coverage growth function is introduced for predicting future coverage growth. Then the sum of the squares of the prediction error is defined and used for selecting the best coverage growth function.
Communications for Statistical Applications and Methods
/
제10권2호
/
pp.479-496
/
2003
We investigate logit confidence intervals for the odds ratio based on the delta method. These intervals are constructed using pseudo-Bayes estimators. The Gart method and Agresti method smooth the observed counts toward the model of equiprobability and independence, respectively. We obtain better coverage probability by smoothing the observed counts toward the pseudo-Bayes estimators in 2$\times$2 table. We also improve legit confidence intervals in 2$\times$2$\times$K tables by generalizing these ideas. Utilizing pseudo-Bayes estimators, we obtain better coverage probability by smoothing the observed counts toward the conditional independence model, no three-factor interaction model and saturated model in 2$\times$2$\times$K tables.
Communications for Statistical Applications and Methods
/
제5권3호
/
pp.905-926
/
1998
We propose a modified mid P-value method to reduce the conservativeness for the inference of conditional associations in three-way contingency tables. This improves the ordinary mfd P-value method. For $2{\times} 2${\times} K$ tables, we propose confidence intervals for an assumed common odds ratio based on inverting two separate one-sided tests using the modified mid P-value. Also, an alternative and usually even better ways of constructing intervals, based on Inverting a two-sided test, are presented. The actual probability of coverage of a 100($1-\alpha$)% confidence interval is centered about the nominal level, but the modified mid P-value approach gives actual coverage probability even closer to the nominal level than the ordinary mid P-value approach.
청소 로봇은 가정에서 사용 가능한 대표적인 지능형 로봇이다. 고가형 청소 로봇은 센서로부터 정보를 제공받아 높은 커버리지 성능을 가진 알고리즘이 존재하지만, 저가형의 청소 로봇엔 적용하기 어렵다. 본 논문은 저가형의 청소 로봇과 같은 환경에서 효율적인 움직임을 구현하기 위해 문법적 진화기법 기반의 청소 로봇의 이동 패턴을 계획하는 알고리즘을 제안한다. 이를 위해 배커스-나우르 표기법을 사용하여 이동 패턴 문법을 정의하고 진화연산을 통해 최적화된 프로그램을 생성하였다. 이와 더불어 프로그램 생성 과정에서 획득한 문법 요소 간 조건부 확률 정보를 활용하였다. 제안 알고리즘의 성능 검증을 위해 청소 로봇 시뮬레이션을 활용하여 기존 알고리즘과 성능을 비교하였으며 실험 결과를 통해 본 논문에서 제안한 기법의 효율성을 확인하였다.
Communications for Statistical Applications and Methods
/
제10권2호
/
pp.277-289
/
2003
We propose modified exact inferential methods in logistic regression model. Exact conditional distribution in logistic regression model is often highly discrete, and ordinary exact inference in logistic regression is conservative, because of the discreteness of the distribution. For the exact inference in logistic regression model we utilize the modified P-value. The modified P-value can not exceed the ordinary P-value, so the test of size $\alpha$ based on the modified P-value is less conservative. The modified exact confidence interval maintains at least a fixed confidence level but tends to be much narrower. The approach inverts results of a test with a modified P-value utilizing the test statistic and table probabilities in logistic regression model.
The number of car accident is Recently on the increase in Korea because of the explosive increase of cars, the poor road condition, the lack of safety facility, and others. The insurant with a accident has to decide whether receiving a insurance or not. In this paper, we represent a reasonable decision support material by calculating the approximate insurance fee based on the discount rate and premium additive rate, which is changed by the accident type and the accident expenditure. Practically, there is difference in the standard insurance rate and premium additive rate according to the accident type and the accident expenditure in Korea. The premium additive rate is assessed considering the number of accident, the pattern of accident, and the reason of accident for 3 years. In this paper, we represent a decision making method considering not only the first-time car accident but also the future car accident. For considering the repeated accident, we analyzed the real data accumulated until the year of 1996 from S Insurance Company, and estimated the probability density function between the first and the second-time accident, and executed the goodness of fit test using ARENA and STATISTICA software. Using this conditional PDF, we can calculate the insurance fee next 3 years and compare the insurance fee with the equivalent present value of cash flows. The program performing this analysis is represented, and written in VISUAL BASIC Language. We tried to suggest an accurate guideline for the insurant to decide the insurance coverage rationally, and tried to correct a wrong idea of dependence on the car insurance only by the amount of the accident expenditure. And we expect this study can generally be applied to many different accident types under the uncertain circumstances in our daily life.
본 논문에서는 그래프 기반의 바이너리 코드 동적 실행 경로 탐색 플랫폼을 제안한다. 바이너리 코드의 조건 분기 명령어를 노드(Node), 그 외의 명령어를 에지(Edge)로 구성된 그래프를 정의하며, 이 그래프를 기반으로 하여 실행 경로 탐색을 수행하는 방안을 제안한다. 실험을 통해 제안하는 그래프 기반 바이너리 코드 실행 경로 탐색 플랫폼의 프로토타입이 실행 경로 탐색을 올바르게 수행함을 확인하였으며, 본 논문에서 제안하는 방안을 통해 소프트웨어 테스팅을 보다 효과적으로 수행하여 소프트웨어 보증, 시큐어 프로그래밍 및 악성 프로그램 분석 등을 보다 효과적으로 수행할 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.