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Abstract 

 
Coverage-guided fuzzing is an efficient solution that has been widely used in software testing. 
By guiding fuzzers through the coverage information, seeds that generate new paths will be 
retained to continually increase the coverage. However, we observed that most samples follow 
the same few high-frequency paths. The seeds that exercise a high-frequency path are saved 
for the subsequent mutation process until the user terminates the test process, which directly 
affects the efficiency with which the low-frequency paths are tested. In this paper, we propose 
a fuzzing solution, ER-Fuzz, that truncates the recording of a high-frequency path to influence 
coverage. It utilizes a deep learning-based classifier to locate the high and low-frequency path 
transfer points; then, it instruments at the transfer position to promote the probability 
low-frequency transfer paths while eliminating subsequent variations of the high-frequency 
path seeds. We implemented a prototype of ER-Fuzz based on the popular fuzzer AFL and 
evaluated it on several applications. The experimental results show that ER-Fuzz improves the 
coverage of the original AFL method to different degrees. In terms of the number of crash 
discoveries, in the best case, ER-Fuzz found 115% more unique crashes than did AFL. In total, 
seven new bugs were found and new CVEs were assigned. 
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1. Introduction and Motivation 

Fuzzing [1] is an automated software testing technique that inputs randomly generated 
information to a program and then monitors the program to catch exceptions during execution. 
Due to the simplicity and efficiency of fuzzing, it has been widely used for testing by software 
manufacturers and in open source software development and has led to the discovery of large 
numbers of vulnerabilities in various software programs. However, the wide application of 
software security testing tools and improvements in code security from developer awareness, 
vulnerabilities now usually appear in deep code structures. The existing fuzzers are effective 
in exploiting shallow vulnerabilities, but have difficulty catching exceptions when facing 
complex code. This problem occurs because most inputs execute along the same 
high-frequency paths, while exploring low-frequency paths is more difficult. Along this line, 
researchers have combined other relevant techniques with fuzzing, such as symbol execution 
[2,3], dynamic analysis [4,5] and others. Driller [6] combined symbol execution to achieve a 
balanced approach using fuzzing and selective concolic execution to find deep errors. Driller 
uses selective concolic [7] execution to test fuzzers considered as more "valuable" but that 
have blocked paths. By combining the advantages of lightweight fuzzing and concolic 
execution, it avoids the inherent defects of path explosion in symbolic execution and 
incomplete fuzzing. Sanjay et al. proposed an application-aware evolutionary fuzzing method, 
Vuzzer [8], that used lightweight static analysis and dynamic analysis of control flow, data 
flow and target attribute characteristics. The input is optimized by calculating the weight of the 
code block and result feedback; then, better input is generated to detect deep code. AFLFast [9] 
proposed a technology based on a Markov chain [10] model to identify low-frequency paths 
and optimize seed-sorting and selection strategies with code coverage [11] to improve the 
probability of low-frequency path testing. 
        Although the above methods adopted different technologies to improve the probability of 
low-frequency path tests, high-frequency path sample testing still occurs, which not only 
limits the probability of low-frequency path tests but also fails to improve the overall test 
efficiency substantially. Instead, in this paper, we propose a new idea: identifying 
low-frequency path transfer conditional code before execution and using a path record 
truncation strategy to cancel the high-frequency inputs, promoting the probability of deep code 
testing. The methods acquired during preprocessing in this procedure do not affect the test 
efficiency. Moreover, it avoids the expensive overhead incurred by symbolic execution or 
dynamic program analysis. 
        This paper also presents a low-frequency transfer point recognition method based on 
deep learning. This method is used to implement a prototype of ER-Fuzz, which is based on 
American Fuzzy Lop (AFL) [12]. The code classification model is generated by Word2vec [13] 
and LSTM [14]. Ten open source projects developed based on C/C++ were selected as the 
basic dataset used to train, verify and evaluate the classify model. In the experiments, the 
proposed method reached a recognition accuracy of 97%. Meanwhile, to verify the fuzzer's 
practicability, it was used to compare and test a dataset of popular applications, and multiple 0 
day vulnerabilities were found in the experiment. 
        A low-frequency path transfer condition refers to conditional statements in the program 
that result in a sample being unable to explore the deep code. As shown in Fig. 1, at the #3 
basic block, the left subtree is the low-frequency path, and the right subtree is the 
high-frequency path. Therefore, the #3 basic block is a low-frequency conditional-code path 
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transfer block. Common transfer conditions include file-format validation checks, magic byte 
[15] checks, and so on. 

1

2 3

4 5

Exit6

7 8

...  
Fig. 1. High and low-frequency paths 

 
        In general, most input parsers include a large number of format checks and 
corresponding error-handling structures for check failures that often result in coverage that is 
difficult to increase. Therefore, error-handling code is the most representative type of 
low-frequency transfer point. Error-handling code refers to code segments that are executed 
when the program exits abnormally for various reasons. While most languages (e.g., C and 
C++) include their own error-handling mechanisms, they also support user-defined 
error-handling methods. Analysis reveals that the error-handling mechanism generally has the 
following three characteristics: 1) the error condition is written in if - else form; 2) the 
error-handling code snippets contain specific keywords, such as internal function names or 
output strings containing the word “error”, or similar terms; 3) the program's exit status may 
include return, goto or contain error macro definitions. Although vulnerabilities may exist in 
error-handling code, analysis has found that the proportion of vulnerabilities contained in such 
code is low. The statistical data in reference [16] summarized the number of bugs in the 
error-handling code and the total number bugs of 6 open source projects, indicating that most 
of the bugs occur in normal code. 
 

Table. 1. Number of error-handling bugs in different projects 

Project LOC Studied period Total 
commits 

Total 
bug-fixes 

Error-hand
ling Bugs 

OpenSSL 
GnuTLS 
WolfSSL 
Curl 
Httpd 
Linux 

469,525 
168,777 
166,667 
153,732 
1,832,007 
10,462,319 

2016-01-01 2017-01-01 
2016-01-01 2017-01-01 
2016-01-01 2017-01-01 
2016-01-01 2017-01-01 
2016-01-01 2017-01-01 
2016-01-01 2017-01-01 

3925 
7035 
1240 

11654 
6781 
3234 

924 
760 
297 

2853 
1049 
1377 

126 
29 
31 

190 
70 

263 

Total 13,253,027  33,869 7260 709 
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Fig. 2. Comparison of the number of bug fixes with the total number of bugs 
 
 

        Error-handling code typically causes a program to output information about the abnormal 
condition and then exit, as shown in Fig. 3. Such code is relatively small, has a simple 
structure, and most error handling does not involve complex memory operations, that is, 
situations that can be triggered when error handling is performed, such as missing return 
values, incorrect resource releases [17], and so on. The method in this paper can also catch 
exception occurrences and reduce false negatives. 
        Coverage-guided fuzzer utilize coverage as an important metric because high code 
coverage is more likely to trigger unknown vulnerabilities in the program. AFL is a widely 
used fuzzer that is based on coverage feedback. The coverage statistics are collected by 
instrumentation at program branches and the statistical results are stored in a shared memory 
location. After each sample is executed, its execution path is recorded. A genetic algorithm 
(GA) [18] is utilized to improve sample quality and increase the coverage rate. However, in 
some cases, this approach produces inefficient results. Listing 1 shows a simplified version of 
Open vSwitch's [19] packet-parsing code function, which contains a check code fragment for 
two different fields. When AFL tests the following function, because its sample mutation is 
random, it is likely that at least one check in the following format is not met, but AFL adds 
instrumentation to all the branches. Because new blocks were found, the samples that 
triggered subsequent branches will be retained, and samples that triggered the error-handling 
branches will be mutated during the next round of testing even if subsequent samples are 
found that can meet all the checks. 
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… 
if (n == 0) {
      break;
        } else if (n < sizeof *oh) {
        ovs_fatal(0, "%s: unexpected end of file 
mid-message", filename);
        }
…

void ovs_fatal(int err_no, const char *format, 
...)
{
    va_list args;
    va_start(args, format);
    ovs_fatal_valist(err_no, format, args);
}

void ovs_fatal_valist(int err_no, const char 
*format, va_list args)
{
    ovs_error_valist(err_no, format, args);
    exit(EXIT_FAILURE);
}

internal  function

internal  function

 

Fig. 3. Error-handling code execution flow 
 

        For the error-handling branches, normal samples cannot be triggered; that is, the optimal 
sample of the path is an exception sample. However, AFL does not have the ability to 
differentiate between normal and abnormal samples, it depends entirely on the path coverage 
information to determine whether the samples should be retained. Consequently, samples of 
this type will be retained and further mutated. 
 

Listing. 1. Packet parse code in Open vSwitch 
1  static void ofctl_ofp_parse(struct ovs_cmdl_context *ctx) 

2  { 

3       … 

4       length = ntohs(oh->length); 

5       if (length < sizeof *oh) { 

6          ovs_fatal(0, "%s: %"PRIuSIZE"-byte message is too short for 7  
OpenFlow",filename, length);  

7        } 

8       tail_len = length - sizeof *oh; 

9       tail = ofpbuf_put_uninit(&b, tail_len); 

10       n = fread(tail, 1, tail_len, file); 

11       if (n < tail_len) { 

12       ovs_fatal(0, "%s: unexpected end of file mid-message", filename); 

13       } 

14       ofp_print(stdout, b.data, b.size, NULL, verbosity + 2); 

15  ｝ 
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In Fig. 1, the code in light green is a normal block, and 5 is an abnormal code block. Samples 
that are exercised in AFL as 1→3→4→6→7 and 1→3→5→Exit will be retained. However, 
vulnerabilities often exist in deep code. In this case, it is easier to find such vulnerabilities by 
increasing the number of samples similar to the execution path of the former. We set the 
original sample set as 1 2{ , ..., S }xS S S= . After the samples have mutated, there are two 

situations. The first type of sample eS  executes the error-handling path after mutation. This 
type of sample is defined as a high-frequency sample, while the opposite is defined as a 
low-frequency sample. The second type of sample rS  performs the normal exit after 
mutation.  

                                               |i r eS S S S∈ →                                                    (1) 

        The mutated sample set is 1 1
1 { { , }}m state r eS S S S= ∈ . And 1 1 1 1

0 1{ , , }r r r riS S S S= … ,
1 1 1 1

0 1{ , , }e e e evS S S S= … . The total time cost of the modified sample set is totalT , which includes 

the time cost of the high-frequency sample set eT  and the low-frequency sample set rT . 

total r eT T T= +                                                        (2) 
        The average time cost of a single sample is 

avgT . 

* *avg r r e eT p t p t= +                                                (3) 

        where rp  and ep  are the probabilities that the samples will mutate to low-frequency or 
high-frequency samples, respectively, and  

                                                                r 1ep p+ =                                                         (4) 

        In (3), rt  and et  are the average time cost of the low-frequency and high-frequency 

samples, respectively. 1
rN  and 1

eN  are the number of low-frequency and high-frequency 

samples, respectively, in 1mS , and  

1 1
0 0

1 1   

i v

S Sr e

r e

c c

r eN N
t te ee e= =

∑ ∑
= =                                                   (5) 

        where 1
rS

c
ε

 and 1
eS

c
e

 are the time cost of the sample ε  from different sample set of 1mS .  

Therefore, it can be concluded that 
1 1*    *r r r e e eT N t T N t= = .                                      (6) 

        Under the premise of reducing the number of high-frequency samples, it is assumed that 
the new mutant sample set is 2 2

2 { { , }}m state r eS S S S= ∈ . 2
rN  and 2

eN  are the number of 

low-frequency and high-frequency samples, respectively, in 2mS . Although 1 2
e eN N> , the 

average time cost of the different samples remains unchanged. 
        As the number of high-frequency samples decreases, a decrease in ep  results in a 

decrease in 
avgT . If totalT  remains unchanged, then 2 2

r eN N+  is greater than 1 1
r eN N+ . 

Because 1
eN  is greater than 2

eN  and 2
rN  is greater than 1

rN  due to the decrease in ep , more 
low-frequency samples can be tested in the same amount of time, and the test probability of 
deep code can increase, making it easier to find vulnerabilities. 
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        The main contributions of this paper are as follows: 1) We propose a low-frequency 
transfer point recognition method based on deep learning for the C/C++ languages and 
evaluate the proposed method. 2) We propose a fuzzing method under optimized 
instrumentation. 3) We implemented a prototype ER-Fuzz based on the above methods and 
conducted performance testing and comparison with state-of-art fuzzers on four applications. 
4) The proposed method found several unreported vulnerabilities during the experiment. 

2. Background 
        In this section, we first introduce previous research achievements in the field of fuzzing. 
Then, we provide background information concerning the two main tasks in ER-Fuzz, the 
original instrumentation method in the fuzzer and error code identification. 

2.1 Related Work 
A. Coverage-based fuzzing 
        Coverage is an important metric for assessing a fuzzer. The size of code coverage directly 
affects the probability of finding vulnerabilities. The fuzzer adjusts the selection strategy of 
seeds based on coverage. Microsoft's Patrice Godefroid et al. proposed a seed file generation 
method called learn&fuzz [20], which used a large number of PDF samples to train a 
sequence-to-sequence deep neural network model. The trained model could generate new PDF 
files and then test programs for reading PDF documents. Experiments showed that the 
generated PDF files achieved high code coverage. Peng Chen et al. proposed Angora [21], 
which does not rely on symbol execution technology to improve coverage. First, the 
input-related byte offset in a conditional branch is found through byte-level taint data tracking; 
then, input to trigger the new branch is calculated through the gradient descent algorithm 
commonly used in machine learning to infer the input bytes for variables and types. The 
method was tested on eight common open source projects and found multiple vulnerabilities. 
The advantage of ER-Fuzz is that it does requires neither complex program analysis, such as 
static analysis, dynamic taint analysis, etc., nor complex strategies, and it has no specific 
requirements for test targets, consequently, it has more extensive applicability. 
B. Directed fuzzing 
        Directed fuzzing is not intended to cover paths as comprehensively as possible but to 
achieve coverage testing for a particular code target type (instruction, basic block, etc.). 
Fuzzing based on taint tracking can be used to determine which bytes of input can be mutated, 
and fuzzing based on symbols can be used to determine the accessibility of the target path. 
Therefore, these two research approaches have been used in many tools. M Mouzarani et al. 
[22] proposed a new intelligent fuzzing method to detect stack overflows in binary code. In the 
proposed method, concolic execution is used to calculate the path and vulnerability constraint 
of each execution path in the program. The vulnerability constraint determines the parts of the 
input data and to what lengths they should be extended to cause buffer overflows in the 
execution path. Based on the calculated constraint, test data that can cause a buffer overflow in 
the detection program path are generated. Marcel Bohme et al. implemented AFLgo [23], a 
guided greybox fuzzer that modified the seed energy allocation strategy of AFL. After 
identifying a sensitive point in the program, AFLgo always selected seed files close to the 
target point for testing and completed the distance calculation according to the simulated 
annealing algorithm on the basis of the call graph (CG) and control flow graph (CFG). AFLgo 
can be used for patch testing, crash reconstruction, static report verification and other 
scenarios. 
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2.2 Standard Instrumentation 
        AFL is able to determine whether the sample covers a new basic block by adding 
instrumentation to obtain information about program execution flow. Although full visibility 
of the basic block coverage information can be achieved, test efficiency is reduced by 
excessive instrumentation. On one hand, executing large amounts of instrumentation code 
requires a certain time overhead. On the other hand, because vulnerabilities are usually hidden 
in deep code, AFL has difficulty finding because it cannot judge the importance of branches. 
For example, some branch transfers belong to high-frequency paths, leading to wasted 
resources for samples performing these high-frequency paths, which reduces test efficiency. 
Although AFL can selectively instrument parts of blocks, doing so may omit important 
coverage information. Therefore, it is a challenge to minimize the coverage impact. At present, 
most existing technologies adopt heuristic methods, but they are not fully applicable to fuzzing. 
Hsu et al. proposed INSTRIM [24], a lightweight instrumentation method suitable for fuzzing, 
which described the problem as a path differentiation problem on the control flow graph and 
proposed two algorithms to solve the accuracy and path differentiation problems, respectively. 
Although this method reduces the cost of instrumentation and improves test efficiency, it still 
ignores some relatively important coverage information, such as the number of branch 
executions. Thus, it can fail to discover some overflow vulnerabilities and has difficulty 
making accurate evaluations. 

2.3 Error-Handling Code Identification 
        Jana et al. proposed a method to identify error-handling codes based on error paths and 
three heuristics. Liu et al. [25] proposed a method combined with machine learning to identify 
error-handling code segments in large-scale software [26]. By analyzing and summarizing 
seven features of error-handling code segments, a decision tree model was used for 
classification. However, the above methods all rely on human experience, and to a certain 
extent, they lack accuracy because they ignore the contextual syntactic relations in the code 
segments, resulting in high false alarm rates. Therefore, their universality needs to be further 
improved. ER-Fuzz proposes using deep learning for classification to eliminate the limitations 
of complex operations and heuristic methods that require extracting features manually. 
Word2vec and LSTM have been widely used and have achieved good results in text 
classification. 
        Word2vec is a two-layer neural network that is very efficient at processing text. It takes 
text as input and outputs a feature vector of the words in the input text, which is useful in 
making computers understand natural language. However, Word2vec is not just useful for 
parsing natural-language statements, it is also useful for performing pattern recognition in 
code. The output of Word2vec is a vocabulary that contains the vectors for all the words within 
the limited frequency of the text corpus. These vectors can be fed into a deep learning network. 
        The Long Short Term Memory network (LSTM), is a recurrent neural network (RNN) 
branch that solves the bottleneck of RNN in dealing with long-term dependence. The LSTM 
architectural unit includes memory units tC  with three gates, namely, an input gate ti , an 

output gate to  and forgetting gate tf . The state of the LSTM unit depends not only on the 

current state of tx  but also on the previous state. The LSTM cell calculation steps are as 
follows: 

1(   [ , ]) )t t t ii Wi h x b−= σ +                                             (7) 
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1(   [ , ] )t f t t ff W h x b−= σ +                                            (8) 

1(   [ , ] )t o t t oo W h x b−= σ +                                              (9) 


1tanh(   [ , ] )t c t t cC W h x b−= +                                            (10) 
1t t t t tC f C i C= − +                                                 (11) 

tanh( )t t th o C=                                                     (12) 
        The three gates determine when new input is allowed, when the current cell state is 
cleared, and when the cell state affects the current network input. LSTM implements 
long-term memory by storing and modifying state information. 

3. Design and Implementation 
        This section introduces the specific implementation of ER-Fuzz, mainly from the 
following two aspects. First, the entire system is introduced, including its components and 
functions. Second, the design and implementation of the two modules are introduced and 
analyzed in detail. 

3.1 Overview 
        The system is mainly composed of two parts. The first part addresses error-handling code 
fragment recognition in the test program. This part extracts all conditional construction code 
fragments in the program; then, it applies the classification model obtained by Word2vec and 
LSTM to predict whether each fragment constitutes is an error-handling code segment. The 
second part addresses path record truncation. All the error-handling code segments obtained 
through the classification are input to the lightweight instrumentation module, which inserts 
instrumentation at the corresponding positions in the source file based on defined 
instrumentation rules. 

 

Dataset

Word2vec and 
LSTM neural 

network

Classify 
model

Light
instrumentation 

model

Target 
program

Classify 
model ER-Fuzz Crash

 

Fig. 4. ER-Fuzz workflow 

3.2 Error-handling code identification 
        There are two phases in identifying error-handling code segments: a training phase and a 
detection phase. In the training phase, a large number of source code files from open source 
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projects are selected and preprocessed to obtain code fragments, which are vectorized and 
used as the input to the neural network model. Finally, a trained classification model is 
obtained. 

source.c
Extract 

the error code 
structure

Extract token 
sequence

Token Vector

if V1

(

ret

…

V2

V3

…

LSTM LSTM LSTM LSTM

 [v1              v2                v3              v4…]

Training 
model

 Fig. 5. Training stage 

3.2.1 Construction of the LSTM error-handling code classifier 
        Training models usually include several steps due to the particularities of error-handling 
code, such as differences in their structural characteristics compared to normal codes as well 
as the complexity of the entire code structure, such as whether they contain nested structures, 
and so on. Therefore, we need to solve a specific case of data preprocessing, labeling, and the 
problem of vectorization. The following is a detailed description of these problems. 

Error-handling structure extraction method 

The symbols required in the method description are defined first, as shown in Table 2. 

Table. 2. Symbols to describe 

Symbols  Describe 

oS Source files before preprocessed 

nS  Source files after preprocessed 
R   Regular expression 

eI     if-else structure collection 

tI Current if-else structure 

nI  Nested if-else structure 

rI Non-nested if-else structure 

lB    Left parenthesis 

rB Right parenthesis 

sC  The number of brackets in the stack 

lC  The number of brackets in the stack at the end of the current structure 
E            Error-handling code structures 

        First, oS  needs to be preprocessed to remove unnecessary information, such as code 

comments, line feeds, and so on. R  is used to effectively extract code and obtain nS . After 

processing, nS  has been extracted from eI . We propose a balance based on stack padding 
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with brackets, which is eI I∀ ∈ , 0lC ≡ . Therefore, we build a similar stack structure when 

lB  is recognized, then 1sC + , when rB  is recognized, then 1sC − , when 0sC = , tI  is 

added to eI . At the same time, the corresponding relationship between the code segment and 
the source file location is recorded for subsequent instrumentation. However, nested structures 

nI  will appear after extraction, causing misjudgments. For example, 1 2&n nI E I E∈ ∉  and 
1 2
n n nI I I+ = , if the model determines that nI E∈ , then 2

nI E∈ , which results in a conflict. 

Therefore, nI  needs to be iterated to ensure that the extracted code fragment is minimized: eI  
needs to be extracted from the first extraction following the same approach until each structure 
is an rI . Listing 2 shows an extracted code snippet. 

Listing. 2. Extraction code snippets 

1: if (!frame→buf[i]) { 

2:       av_frame_unref(frame); 

3:       return AVERROR(ENOMEM); 

4:   } 

Code parsing based abstract syntax tree (AST) 

        The extracted code fragment is parsed into a word sequence, and all the fragments are 
parsed into an equal-length sequence in this step for easy input into the LSTM network. An 
abstract syntax tree (AST) [27] is used to extract the code sequences in the parsing phase. 
Simultaneously, symbolization is carried out. For example, an integer is represented as num 
and a string is represented as str. However, in this classification, the string contents will have 
some impact, as shown in Listing 3. 

Listing. 3. A code segment containing a string 

1: if (!f) { 

2:   fprintf(stderr, "%s: I/O error\n", filename); 

3:       exit(1); 

4:   } 

We have studied that most error-handling code fragments contain one feature. That is, if the 
code fragment contained a string, the string usually contains the words error, fail or other 
words with similar meanings. Therefore, we use two methods for string symbolization, 
including whether the string contain special keywords. These symbols are specifically 
expressed as errstr and str. In Listing 3, for example, the resolved form would be similar to [' 
if ', '(','. ', 'f', ') ', '{',' fprintf ', '(',' stderr ', ', ', 'errstr', 'filename'..]. Although some fault-indicating 
expressions are extracted by the previous analysis, their number is limited. WordNet [28] is 
used to extend this process. WordNet is an English dictionary, established and maintained by 
Princeton University. The words grouped by definitions, and each entry with the same 
meaning constitutes a collection of synonyms. We can use this group of entries to expand the 
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vocabulary of fault-indicating expressions. 

Error Fault Wrong ...

Fig. 6. Vocabulary expansion 

Heuristics-based labeling 

        Because our approach adopts supervised learning, each sample needs to be labeled. A 
code segment that belongs to an error-handling code segment will be marked as 1. Otherwise, 
it will be marked as 0. Code snippets are labeled heuristically. The following five heuristics 
are summarized from the analysis of a large number of source files. 

1) An if structure usually includes one and more comparisons as shown in Listing 4
2) If the segment contains a string, the string contains an error expression.
3) The segment may contain return or jump keywords such as return, goto, etc.
4) If the segment contains functions, the function name usually includes an error

expression, as shown in Listing 4. 
5) The segment may contains system error-macro definitions, such as 'EPERM',

'ENOENT', etc. 

Listing. 4. A code segment containing a comparison 

1: if (ret != length) 

2:   png_error(png_ptr, "PNG Write Error"); 

Listing. 5. A code segment containing an error macro definition 

1: if (strncmp(dev_name, prefix, strlen(prefix))) 

2:       return ENODEV; 

Input vectorization and LSTM network training 

        The obtained token sequences are used as input for the vectorization process. We use 
Word2vec, a tool widely used for text vectorization. The word vector model is obtained by 
setting the feature vector dimension and the word frequency parameter. The vocabulary index 
and word vector dictionary are established based on the model and used as input to the 
subsequent LSTM model. Different sections of code contain different numbers of tokens; 
however, the LSTM can accept only input vectors of a given length. Therefore, the vectors 
need to be padded or pruned. After obtaining the code segment vectorization results and the 
code segment labels, the LSTM network can be trained. In addition to the necessary embedded 
layers [29,30], LSTM units such as basic and dropout layers are added to avoid overfitting to 
some degree. 

3.2.2 Error code detection based on the trained model 
        The detection phase is used to detect the type of a given code fragment. If a block of code 
consists of error-handling code, the trained model will output the file to which it belongs and 
the fragment's location in the source file. Given an unknown project, the specific detection 
process is as follows. 
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1. Extract the error-handling code snippet structures from each project file and record the
file name and locations to which they belong 

2. Analyze the code fragment to obtain a corresponding token sequence
3. Use the previously trained Word2vec model to vectorize the token sequence obtained

in step 2 according to the preceding rules 
4. Input the obtained vector into the trained LSTM network for classification

3.3 Record truncation based on lightweight instrumentation 

        Lightweight instrumentation mainly involves instrumenting source code and optimizing 
the fuzzer instrumentation. The goal of the first part is to find the proper location in the source 
code to instrument. The second part determines the path record truncation based on the 
instrumented source code. 

Instrumentation position analysis and code structure repair 

        Based on the result of the classification model and combined with the index of the if-else 
structure location in the source file, the error-handling code segment is instrumented using 
both internal and external instrumentation. Listing 6 shows an example. Because an if 
statement is compiled as a conditional jump instruction, the fuzzer instrumentation is 
determined by the conditional jump instruction. Therefore, instrumentation added before an if 
structure can influence whether subsequent basic blocks have been instrumented. 
Instrumentation added before the first statement of the if structure can determine the recording 
mode of the subsequent basic blocks. Because the first statement is the beginning of a basic 
block after a jump instruction, a conditional jump instruction may still exist in subsequent 
execution; therefore, the first statement determines the recorded results of traversing all the 
subsequent basic blocks on this block path containing if structures. Specific reasons will be 
explained later in this paper. There are three main situations. 
1) Within an if structure

Listing. 6. if structure code fragment 

1: if (ret < 0) { 

2:   response = xasprintf("Device '%s' can not be detached", argv[1]); 

3:   goto error; 

4:  } 

        In the first case, the error-handling code is inside the if structure. In this case, the code 
only needs to be instrumented before the if statement and the first statement in the if structure. 
2) Within an else structure

Listing. 7. else structure code fragment 

1: else { 

2:       VLOG_WARN("tc: Invalid policy '%s'", policy); 

3:       return; 

4:  } 

        In this case, error-handling code also appears in the else structure; therefore, it is 
necessary to instrument the first statement in the else structure as well as the adjacent if 
statement before the else structure. If the preorder structure is else if structure, the else if 
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structure needs to be transformed into an if structure (as shown in Fig. 11) and then 
instrumented before the if. 

…

else if ( ) {
…

 }

…

else {
 if ( ) {

  …

  }
 }

Fig. 11. else if structure transformation 

3) Within an else if structure
Listing. 8. else if structure code segment 

1: else if (*total_len < pin->packet_len) { 

2:     VLOG_WARN_RL(&bad_ofmsg_rl, "NXT_PACKET_IN2 claimed full_len < len"); 

3:      return OFPERR_OFPBRC_BAD_LEN; 

4: } 

        In the third case, the error-handling code appears inside an else if structure. After 
performing the process shown in Fig. 11, this code is instrumented before the if statement and 
before the first statement in the else if structure. When performing else if instrumentation, the 
original code structure is broken and must be fixed to ensure that the code compiles and runs 
correctly. Algorithm 1 is used to repair the source code structure. 

Algorithm 1 Integrity Repair 
1:procedure Repair(current struct) 
2:   neighbor struct = current struct→next 
3:   while neighbor struct do 
4:       switch neighbor structure do 
5:        case if struct then 
6:          if neighbor struct is nest then 
7:                   goto next 
8:               else then 
9:                   INTEGRITY (end of latest else-if struct) 
10:              end if  
11:          case else struct then 
12:              if neighbor struct is nest then 
13:                  goto next 
14:              else then 
15:                  INTEGRITY(end of neighbor struct) 
16:             end if  
17:          case else-if struct then 
18:        goto next 
19:   end while 
20: next: 
21:       neighbor struct = neighbor struct→next 
22:       continue 
23: end procedure 
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        After executing the above algorithm, the program can be compiled and run accurately. 

Path recording truncation based on lightweight instrumenting 

        The fuzzer instrumentation process is performed after the source file has been compiled 
into assembly code. Thus, the source code is instrumented by assembly code in this part. The 
mapping of shared memory, records of branch information and so on are implemented in the 
original instrumentation to collect the coverage information statistics. ER-Fuzz achieves the 
function of subsequent record cancellation by inserting the continue_log flag in the source 
code. Informally, we call continue_log named as record flag. This flag is defined in the BSS 
segment. Because the BSS segment contains uninitialized, this segment's memory is cleared 
before each round. Therefore, this flag can be set to 1 to indicate that subsequent basic blocks 
should no longer be recorded. By searching the continue_log at the entrance point of the 
original instrumenting code, when the flag is 1, the code can jump to the return statement to 
cancel the record of the basic block. The flag is subsequently always marked as 1 ; therefore, 
subsequent basic blocks are no longer recorded. That is, if the original path is 1→2→3→… 
and 3 contains the flag, the record becomes 1→2. At the beginning of the next round of testing, 
the flag is cleared to allow a normal execution path recorded. However, such instrumentation 
can occur in two situations, as shown in Fig. 7 and Fig. 8. 

Block1
(instrumentation)

continue_log=1
Block2

Block3
(instrumentation)

Block4
(instrumentation)

Block5

Block1
(instrumentation)

continue_log=1
Block2

(instrumentation)
Block3

Block4
(instrumentation)

Block5

Fig. 7. Flag in uninstrumented basic block        Fig. 8. Flag in instrumented basic block 

Fig. 9. Uninstrumented basic block           Fig. 10. Instrumented basic block 

        If a record flag is inserted after the instrumentation code (Fig. 10), the basic block is still 
logged. Although subsequent blocks will not continue recording because the flag has been set 
to 1, this record will still be considered to have generated a new path so that the test sample is 
retained, which fails to accomplish the goal. Therefore, as shown in Fig. 10, the original 
instrumentation for the current conditional jump needs to be cancelled. 
        Because it should not affect the normal execution flow of the program, a nop instruction 
is used for instrumentation and another flag is added at the instruction annotation. Because the 

… 
call    __afl_maybe_log 
…

mov     ds:continue_log, 1 
…

jmp     loc_40091D 

… 
mov     ds:continue_log, 1 
…

jmp     loc_40091D   
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assembly code annotation is not cleared after the source code is compiled as assembly code, 
the annotation can determine to cancel original instrumentation. When an annotation flag is 
encountered, an instrumentation flag is assigned. When the conditional jump instruction is 
encountered, the instrumentation is judged according to this flag; then, the flag is cleared. The 
process will be repeated until all the code has been instrumented. In this way, the subsequent 
code block can skip the instrumentation process. The statement if (i! =0) assembles 
instructions in different source files because of compile optimization, which may include JZ or 
JNZ opcodes, etc. The original instrumentation is performed only at the point of a negative 
jump. ER-Fuzz responds to the above situation by eliminating instrumentation at branches 
with flags. Although a basic block record is cancelled, the information concerning the 
effective path is not affected. 
        The advantage of this method is that when a sample exists that can meet the condition 
check during the continuous mutation process, the previously retained wrong sample will no 
longer be used to conduct mutation. Instead, ER-Fuzz will invest resources in samples that are 
more likely to generate new paths. 

4. Experiments and Results
        We implemented ER-Fuzz using both Python and C. We evaluated and compared the 
classification model used for error-handling code identification. In addition, we selected real 
applications to evaluate the performance of ER-Fuzz in terms of both code coverage and crash 
findings. 

4.1 Error-handling code identification 
        A classification model is usually evaluated using accuracy and F-score metrics, which are 
calculated as follows: 

TP TN
Accuracy

TP TN FP FN
+

=
+ + +

*
1 2*

precision recall
F score

precision recall
− =

+

TP
Precision

TP FP
=

+

TP
Recall

TP FN
=

+

        True Positive (TP) and True Negative (TN) belong to the cases in which samples of type 
1 and type 2 are correctly classified, and False Positive (FP) and False Negative (FN) belong to 
the cases in which samples of type 1 and type 2 are incorrectly classified. The accuracy rate 
reflects the model's prediction accuracy over the entire dataset and is usually used to evaluate 
classifier performance. However, in the case of unbalanced datasets, the accuracy score may 
be misleading. As a harmonic average from P and R, the comprehensive results (F1-score) can 
better evaluate the effectiveness of the model. For a dataset, we selected ten widely used open 
source projects developed in C/C++, including mpg123-1.25.10, libpng-1.6.35, Open 
vSwitch-2.9.0, libtiff-4.0.8, ImageMagick-7.0.8, Exiv2-0.26, libbpg-0.9.8, libming-0.4.8, 
libraw-0.19, libpcap-1.7.4. We calculated the size of each project, the number of C/C++ 
source files it contained, and the number of error-handling code structures. In total, the number 
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of error code sections collected was 16,968, and the number of normal code sections was 
20,000. We randomly chose 10,200 error code sections and 12,000 normal code sections as the 
training set. A total of 3,400 error code sections and 4,000 normal code sections were 
randomly chosen as the test set and the same numbers of sections were used for the verification 
set. 

Table. 3. Data set information statistics 
Applications Size（MB） Files(c/cpp) EH 
mpg123-1.25.10 4.15 103 623 
libpng-1.6.35 5.67 115 1031 
Open vSwitch-2.9.0 50.3 384 3959 
libtiff-4.0.8 1.33 114 1287 
ImageMagick-7.0.8 50.8 275 1442 
Exiv2-0.26 51.9 138 75 
libbpg-0.9.8 12 158 212 
libming-0.4.8 21 188 1281 
libraw-0.19 2.45 28 198 
libpcap-1.7.4 3.11 63 933 

 Several rounds of training were conducted for different times on the training set. The results 
of each training round were statistically analyzed. The experimental results showed that after 
10 training sessions, the accuracy rate and callback rate were stable at approximately 0.97, and 
the effect was significant. 

Table. 4. classification model experimental results 

Epoch Validation 
accuracy 

Validation 
loss 

Testing 
accuracy 

Testing 
loss Precision Recall F-score 

5 0.946 0.156 0.942 0.151 0.993 0.889 0.938 
5 0.962 0.139 0.957 0.124 0.971 0.947 0.959 
5 0.946 0.143 0.951 0.117 0.992 0.890 0.938 

10 0.968 0.116 0.968 0.095 0.969 0.960 0.965 
10 0.968 0.115 0.957 0.116 0.963 0.966 0.965 
10 0.971 0.123 0.969 0.085 0.975 0.962 0.968 
20 0.972 0.106 0.979 0.060 0.986 0.953 0.969 
20 0.973 0.101 0.971 0.085 0.970 0.972 0.971 
20 0.971 0.109 0.967 0.095 0.971 0.966 0.968 
30 0.973 0.095 0.962 0.106 0.977 0.966 0.971 
30 0.975 0.109 0.956 0.121 0.984 0.961 0.972 
30 0.973 0.110 0.970 0.099 0.975 0.967 0.971 

      As a comparison, we refer to the data reported for IdenEH. The comparison results are 
shown in Table 5. The model using LSTM is superior to the decision tree model. 

Table. 5. LSTM and Decision tree model comparison 
Model Precision Recall F-score 

Decision tree 0.860 0.840 0.849 
LSTM 0.970 0.972 0.971 



3528                   Song et al.:ER-Fuzz：Conditional Code Removed Fuzzing 

4.2 Various Applications 
        We used a set of applications as the test data set (mpg123-1.25.10, exiv2-0.26, 
tcptrace+libpcap-1.7.4, swftotcl+libming-0.4.8) to evaluate the performance of ER-Fuzz on 
different volumes of error-handling code. AFLFast was selected for comparative testing in 
consideration of its representativeness and its open source status among coverage-based 
fuzzing methods (while other representative tools exist, most are not open source). In this 
performance comparison, we ran AFL and AFLFast in the same environment and evaluated 
them on 4 applications under the same configuration, i.e., a virtual machine configured with a 
4 core 2GHz Intel CPU and 4 GB of RAM running Ubuntu 15.10. Each program was 
evaluated for 12 hours. The test metrics include code coverage and the number of crash 
triggers. 

Fig. 11. swftotcl  Fig. 12. Exiv2 

Fig. 13. mpg123     Fig. 14. Tcptrace 

        Figs. 11-14 show coverage comparison diagrams of AFLFast, AFL, and ER-Fuzz, where 
the X-axis represents the test time, and the Y-axis represents the number of new samples 
generated. No obvious differences appear at the beginning of the test, but after a period of time, 
AFL finds new paths at a slower rate than does ER-Fuzz. This result occurs because ER-Fuzz 
pays more attention to the low-frequency samples in the sample set, which substantially 
increases the coverage rate. As shown, on swftotcl and tcptrace, ER-Fuzz achieved improved 
coverage compared with AFL and AFLFast. However, on the other two projects, ER-Fuzz was 
not as effective as AFLFast. This result is mainly related to the number of error-handling code 
structures in the project. In other words, when the error-handling code structures constitute a 
larger proportion of the project, the effect of ER-Fuzz becomes more significant. In contrast, 
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when the proportion of error-handling code is relatively low, the improvement may not be 
obvious, such as on the Exiv2 project. In all cases, no obvious change occurs at the early stage 
because during the early stage of testing, few paths are covered, and new paths grow relatively 
quickly. 
        In addition, we compared the number of crash findings. In two of these projects, ER-Fuzz 
found more crashes than did AFL and AFLFast. However, for Exiv2, where the number of 
error-handling structures is small, ER-Fuzz found fewer crash triggers than did AFLFast. 
During this process, ER-Fuzz found seven 0 day vulnerabilities, and CVEs were assigned. 

Fig. 12. Comparison of crash amount 

Table 6. Vulnerability List 

exiv2-0.26 
CVE-2018-10958 
CVE-2018-10998 
CVE-2018-10999 
CVE-2018-11037 

libming-0.4.8 
CVE-2018-13066 
CVE-2018-13250 
CVE-2018-13251 

5. Conclusion
        In this paper, we studied the influence of high-frequency paths on fuzzing efficiency and 
proposed a fuzzing solution, ER-Fuzz, which resolves the issue of high-frequency path 
samples affecting the efficiency of the state-of-art fuzzer AFL. We proposed an 
instrumentation method that influences path record truncation to steer the fuzzer toward 
unexplored paths. In the experiments, four applications were tested and compared. The code 
coverage and the number of crashes found by ER-Fuzz were significantly higher than those of 
AFL; moreover, ER-Fuzz found seven-day vulnerabilities during the experiment. These 
experimental results verify the influence of high-frequency paths in overall testing. In future 
research, we plan to investigate whether the advantages of directed fuzzing technology can be 
integrated, such as concolic execution, to further improve the breakthrough time of complex 
condition detection or magic byte detection. In addition, we plan to address situations 
involving multicondition judgments and functions in judgments. 
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