
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, Jun. 2019 3511
Copyright ⓒ 2019 KSII

ER-Fuzz：Conditional Code Removed
Fuzzing

Xiaobin Song, Zehui Wu, Yan Cao and Qiang Wei*

China National Digital Switching System Engineering and Technological Research Center
Zhengzhou, Henan 450002 – China

[e-mail:xdxiaobin@gmail.com]
[e-mail:prof_weiqiang@163.com]
*Corresponding author: Qiang Wei

Received September 2, 2018; revised December 2, 2018; accepted January 8, 2019;

published July 31, 2019

Abstract

Coverage-guided fuzzing is an efficient solution that has been widely used in software testing.
By guiding fuzzers through the coverage information, seeds that generate new paths will be
retained to continually increase the coverage. However, we observed that most samples follow
the same few high-frequency paths. The seeds that exercise a high-frequency path are saved
for the subsequent mutation process until the user terminates the test process, which directly
affects the efficiency with which the low-frequency paths are tested. In this paper, we propose
a fuzzing solution, ER-Fuzz, that truncates the recording of a high-frequency path to influence
coverage. It utilizes a deep learning-based classifier to locate the high and low-frequency path
transfer points; then, it instruments at the transfer position to promote the probability
low-frequency transfer paths while eliminating subsequent variations of the high-frequency
path seeds. We implemented a prototype of ER-Fuzz based on the popular fuzzer AFL and
evaluated it on several applications. The experimental results show that ER-Fuzz improves the
coverage of the original AFL method to different degrees. In terms of the number of crash
discoveries, in the best case, ER-Fuzz found 115% more unique crashes than did AFL. In total,
seven new bugs were found and new CVEs were assigned.

Keywords: Fuzzing, Deep learning, instrumentation, conditional code

This work was supported by the Ministry of Science and Technology of China under Grant 2017YFB0802901.

http://doi.org/10.3837/tiis.2019.07.010 ISSN : 1976-7277

3512 Song et al.:ER-Fuzz：Conditional Code Removed Fuzzing

1. Introduction and Motivation

Fuzzing [1] is an automated software testing technique that inputs randomly generated
information to a program and then monitors the program to catch exceptions during execution.
Due to the simplicity and efficiency of fuzzing, it has been widely used for testing by software
manufacturers and in open source software development and has led to the discovery of large
numbers of vulnerabilities in various software programs. However, the wide application of
software security testing tools and improvements in code security from developer awareness,
vulnerabilities now usually appear in deep code structures. The existing fuzzers are effective
in exploiting shallow vulnerabilities, but have difficulty catching exceptions when facing
complex code. This problem occurs because most inputs execute along the same
high-frequency paths, while exploring low-frequency paths is more difficult. Along this line,
researchers have combined other relevant techniques with fuzzing, such as symbol execution
[2,3], dynamic analysis [4,5] and others. Driller [6] combined symbol execution to achieve a
balanced approach using fuzzing and selective concolic execution to find deep errors. Driller
uses selective concolic [7] execution to test fuzzers considered as more "valuable" but that
have blocked paths. By combining the advantages of lightweight fuzzing and concolic
execution, it avoids the inherent defects of path explosion in symbolic execution and
incomplete fuzzing. Sanjay et al. proposed an application-aware evolutionary fuzzing method,
Vuzzer [8], that used lightweight static analysis and dynamic analysis of control flow, data
flow and target attribute characteristics. The input is optimized by calculating the weight of the
code block and result feedback; then, better input is generated to detect deep code. AFLFast [9]
proposed a technology based on a Markov chain [10] model to identify low-frequency paths
and optimize seed-sorting and selection strategies with code coverage [11] to improve the
probability of low-frequency path testing.
 Although the above methods adopted different technologies to improve the probability of
low-frequency path tests, high-frequency path sample testing still occurs, which not only
limits the probability of low-frequency path tests but also fails to improve the overall test
efficiency substantially. Instead, in this paper, we propose a new idea: identifying
low-frequency path transfer conditional code before execution and using a path record
truncation strategy to cancel the high-frequency inputs, promoting the probability of deep code
testing. The methods acquired during preprocessing in this procedure do not affect the test
efficiency. Moreover, it avoids the expensive overhead incurred by symbolic execution or
dynamic program analysis.
 This paper also presents a low-frequency transfer point recognition method based on
deep learning. This method is used to implement a prototype of ER-Fuzz, which is based on
American Fuzzy Lop (AFL) [12]. The code classification model is generated by Word2vec [13]
and LSTM [14]. Ten open source projects developed based on C/C++ were selected as the
basic dataset used to train, verify and evaluate the classify model. In the experiments, the
proposed method reached a recognition accuracy of 97%. Meanwhile, to verify the fuzzer's
practicability, it was used to compare and test a dataset of popular applications, and multiple 0
day vulnerabilities were found in the experiment.
 A low-frequency path transfer condition refers to conditional statements in the program
that result in a sample being unable to explore the deep code. As shown in Fig. 1, at the #3
basic block, the left subtree is the low-frequency path, and the right subtree is the
high-frequency path. Therefore, the #3 basic block is a low-frequency conditional-code path

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019 3513

transfer block. Common transfer conditions include file-format validation checks, magic byte
[15] checks, and so on.

1

2 3

4 5

Exit6

7 8

...
Fig. 1. High and low-frequency paths

 In general, most input parsers include a large number of format checks and
corresponding error-handling structures for check failures that often result in coverage that is
difficult to increase. Therefore, error-handling code is the most representative type of
low-frequency transfer point. Error-handling code refers to code segments that are executed
when the program exits abnormally for various reasons. While most languages (e.g., C and
C++) include their own error-handling mechanisms, they also support user-defined
error-handling methods. Analysis reveals that the error-handling mechanism generally has the
following three characteristics: 1) the error condition is written in if - else form; 2) the
error-handling code snippets contain specific keywords, such as internal function names or
output strings containing the word “error”, or similar terms; 3) the program's exit status may
include return, goto or contain error macro definitions. Although vulnerabilities may exist in
error-handling code, analysis has found that the proportion of vulnerabilities contained in such
code is low. The statistical data in reference [16] summarized the number of bugs in the
error-handling code and the total number bugs of 6 open source projects, indicating that most
of the bugs occur in normal code.

Table. 1. Number of error-handling bugs in different projects

Project LOC Studied period Total
commits

Total
bug-fixes

Error-hand
ling Bugs

OpenSSL
GnuTLS
WolfSSL
Curl
Httpd
Linux

469,525
168,777
166,667
153,732
1,832,007
10,462,319

2016-01-01 2017-01-01
2016-01-01 2017-01-01
2016-01-01 2017-01-01
2016-01-01 2017-01-01
2016-01-01 2017-01-01
2016-01-01 2017-01-01

3925
7035
1240

11654
6781
3234

924
760
297

2853
1049
1377

126
29
31

190
70

263

Total 13,253,027 33,869 7260 709

3514 Song et al.:ER-Fuzz：Conditional Code Removed Fuzzing

Fig. 2. Comparison of the number of bug fixes with the total number of bugs

 Error-handling code typically causes a program to output information about the abnormal
condition and then exit, as shown in Fig. 3. Such code is relatively small, has a simple
structure, and most error handling does not involve complex memory operations, that is,
situations that can be triggered when error handling is performed, such as missing return
values, incorrect resource releases [17], and so on. The method in this paper can also catch
exception occurrences and reduce false negatives.
 Coverage-guided fuzzer utilize coverage as an important metric because high code
coverage is more likely to trigger unknown vulnerabilities in the program. AFL is a widely
used fuzzer that is based on coverage feedback. The coverage statistics are collected by
instrumentation at program branches and the statistical results are stored in a shared memory
location. After each sample is executed, its execution path is recorded. A genetic algorithm
(GA) [18] is utilized to improve sample quality and increase the coverage rate. However, in
some cases, this approach produces inefficient results. Listing 1 shows a simplified version of
Open vSwitch's [19] packet-parsing code function, which contains a check code fragment for
two different fields. When AFL tests the following function, because its sample mutation is
random, it is likely that at least one check in the following format is not met, but AFL adds
instrumentation to all the branches. Because new blocks were found, the samples that
triggered subsequent branches will be retained, and samples that triggered the error-handling
branches will be mutated during the next round of testing even if subsequent samples are
found that can meet all the checks.

OpenSSL

GnuTLS

WolfSSL

Curl

Httpd

Linux

0 500 1000 1500 2000 2500 3000

total

Ap
pl

ic
at

io
n

 total
 ER

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019 3515

…
if (n == 0) {
 break;
 } else if (n < sizeof *oh) {
 ovs_fatal(0, "%s: unexpected end of file
mid-message", filename);
 }
…

void ovs_fatal(int err_no, const char *format,
...)
{
 va_list args;
 va_start(args, format);
 ovs_fatal_valist(err_no, format, args);
}

void ovs_fatal_valist(int err_no, const char
*format, va_list args)
{
 ovs_error_valist(err_no, format, args);
 exit(EXIT_FAILURE);
}

internal function

internal function

Fig. 3. Error-handling code execution flow

 For the error-handling branches, normal samples cannot be triggered; that is, the optimal
sample of the path is an exception sample. However, AFL does not have the ability to
differentiate between normal and abnormal samples, it depends entirely on the path coverage
information to determine whether the samples should be retained. Consequently, samples of
this type will be retained and further mutated.

Listing. 1. Packet parse code in Open vSwitch
1 static void ofctl_ofp_parse(struct ovs_cmdl_context *ctx)

2 {

3 …

4 length = ntohs(oh->length);

5 if (length < sizeof *oh) {

6 ovs_fatal(0, "%s: %"PRIuSIZE"-byte message is too short for 7
OpenFlow",filename, length);

7 }

8 tail_len = length - sizeof *oh;

9 tail = ofpbuf_put_uninit(&b, tail_len);

10 n = fread(tail, 1, tail_len, file);

11 if (n < tail_len) {

12 ovs_fatal(0, "%s: unexpected end of file mid-message", filename);

13 }

14 ofp_print(stdout, b.data, b.size, NULL, verbosity + 2);

15 ｝

3516 Song et al.:ER-Fuzz：Conditional Code Removed Fuzzing

In Fig. 1, the code in light green is a normal block, and 5 is an abnormal code block. Samples
that are exercised in AFL as 1→3→4→6→7 and 1→3→5→Exit will be retained. However,
vulnerabilities often exist in deep code. In this case, it is easier to find such vulnerabilities by
increasing the number of samples similar to the execution path of the former. We set the
original sample set as 1 2{ , ..., S }xS S S= . After the samples have mutated, there are two

situations. The first type of sample eS executes the error-handling path after mutation. This
type of sample is defined as a high-frequency sample, while the opposite is defined as a
low-frequency sample. The second type of sample rS performs the normal exit after
mutation.

 |i r eS S S S∈ → (1)

 The mutated sample set is 1 1
1 { { , }}m state r eS S S S= ∈ . And 1 1 1 1

0 1{ , , }r r r riS S S S= … ,
1 1 1 1

0 1{ , , }e e e evS S S S= … . The total time cost of the modified sample set is totalT , which includes

the time cost of the high-frequency sample set eT and the low-frequency sample set rT .

total r eT T T= + (2)
 The average time cost of a single sample is

avgT .

* *avg r r e eT p t p t= + (3)

 where rp and ep are the probabilities that the samples will mutate to low-frequency or
high-frequency samples, respectively, and

 r 1ep p+ = (4)

 In (3), rt and et are the average time cost of the low-frequency and high-frequency

samples, respectively. 1
rN and 1

eN are the number of low-frequency and high-frequency

samples, respectively, in 1mS , and

1 1
0 0

1 1

i v

S Sr e

r e

c c

r eN N
t te ee e= =

∑ ∑
= = (5)

 where 1
rS

c
ε

 and 1
eS

c
e

 are the time cost of the sample ε from different sample set of 1mS .

Therefore, it can be concluded that
1 1* *r r r e e eT N t T N t= = . (6)

 Under the premise of reducing the number of high-frequency samples, it is assumed that
the new mutant sample set is 2 2

2 { { , }}m state r eS S S S= ∈ . 2
rN and 2

eN are the number of

low-frequency and high-frequency samples, respectively, in 2mS . Although 1 2
e eN N> , the

average time cost of the different samples remains unchanged.
 As the number of high-frequency samples decreases, a decrease in ep results in a

decrease in
avgT . If totalT remains unchanged, then 2 2

r eN N+ is greater than 1 1
r eN N+ .

Because 1
eN is greater than 2

eN and 2
rN is greater than 1

rN due to the decrease in ep , more
low-frequency samples can be tested in the same amount of time, and the test probability of
deep code can increase, making it easier to find vulnerabilities.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019 3517

 The main contributions of this paper are as follows: 1) We propose a low-frequency
transfer point recognition method based on deep learning for the C/C++ languages and
evaluate the proposed method. 2) We propose a fuzzing method under optimized
instrumentation. 3) We implemented a prototype ER-Fuzz based on the above methods and
conducted performance testing and comparison with state-of-art fuzzers on four applications.
4) The proposed method found several unreported vulnerabilities during the experiment.

2. Background
 In this section, we first introduce previous research achievements in the field of fuzzing.
Then, we provide background information concerning the two main tasks in ER-Fuzz, the
original instrumentation method in the fuzzer and error code identification.

2.1 Related Work
A. Coverage-based fuzzing
 Coverage is an important metric for assessing a fuzzer. The size of code coverage directly
affects the probability of finding vulnerabilities. The fuzzer adjusts the selection strategy of
seeds based on coverage. Microsoft's Patrice Godefroid et al. proposed a seed file generation
method called learn&fuzz [20], which used a large number of PDF samples to train a
sequence-to-sequence deep neural network model. The trained model could generate new PDF
files and then test programs for reading PDF documents. Experiments showed that the
generated PDF files achieved high code coverage. Peng Chen et al. proposed Angora [21],
which does not rely on symbol execution technology to improve coverage. First, the
input-related byte offset in a conditional branch is found through byte-level taint data tracking;
then, input to trigger the new branch is calculated through the gradient descent algorithm
commonly used in machine learning to infer the input bytes for variables and types. The
method was tested on eight common open source projects and found multiple vulnerabilities.
The advantage of ER-Fuzz is that it does requires neither complex program analysis, such as
static analysis, dynamic taint analysis, etc., nor complex strategies, and it has no specific
requirements for test targets, consequently, it has more extensive applicability.
B. Directed fuzzing
 Directed fuzzing is not intended to cover paths as comprehensively as possible but to
achieve coverage testing for a particular code target type (instruction, basic block, etc.).
Fuzzing based on taint tracking can be used to determine which bytes of input can be mutated,
and fuzzing based on symbols can be used to determine the accessibility of the target path.
Therefore, these two research approaches have been used in many tools. M Mouzarani et al.
[22] proposed a new intelligent fuzzing method to detect stack overflows in binary code. In the
proposed method, concolic execution is used to calculate the path and vulnerability constraint
of each execution path in the program. The vulnerability constraint determines the parts of the
input data and to what lengths they should be extended to cause buffer overflows in the
execution path. Based on the calculated constraint, test data that can cause a buffer overflow in
the detection program path are generated. Marcel Bohme et al. implemented AFLgo [23], a
guided greybox fuzzer that modified the seed energy allocation strategy of AFL. After
identifying a sensitive point in the program, AFLgo always selected seed files close to the
target point for testing and completed the distance calculation according to the simulated
annealing algorithm on the basis of the call graph (CG) and control flow graph (CFG). AFLgo
can be used for patch testing, crash reconstruction, static report verification and other
scenarios.

3518 Song et al.:ER-Fuzz：Conditional Code Removed Fuzzing

2.2 Standard Instrumentation
 AFL is able to determine whether the sample covers a new basic block by adding
instrumentation to obtain information about program execution flow. Although full visibility
of the basic block coverage information can be achieved, test efficiency is reduced by
excessive instrumentation. On one hand, executing large amounts of instrumentation code
requires a certain time overhead. On the other hand, because vulnerabilities are usually hidden
in deep code, AFL has difficulty finding because it cannot judge the importance of branches.
For example, some branch transfers belong to high-frequency paths, leading to wasted
resources for samples performing these high-frequency paths, which reduces test efficiency.
Although AFL can selectively instrument parts of blocks, doing so may omit important
coverage information. Therefore, it is a challenge to minimize the coverage impact. At present,
most existing technologies adopt heuristic methods, but they are not fully applicable to fuzzing.
Hsu et al. proposed INSTRIM [24], a lightweight instrumentation method suitable for fuzzing,
which described the problem as a path differentiation problem on the control flow graph and
proposed two algorithms to solve the accuracy and path differentiation problems, respectively.
Although this method reduces the cost of instrumentation and improves test efficiency, it still
ignores some relatively important coverage information, such as the number of branch
executions. Thus, it can fail to discover some overflow vulnerabilities and has difficulty
making accurate evaluations.

2.3 Error-Handling Code Identification
 Jana et al. proposed a method to identify error-handling codes based on error paths and
three heuristics. Liu et al. [25] proposed a method combined with machine learning to identify
error-handling code segments in large-scale software [26]. By analyzing and summarizing
seven features of error-handling code segments, a decision tree model was used for
classification. However, the above methods all rely on human experience, and to a certain
extent, they lack accuracy because they ignore the contextual syntactic relations in the code
segments, resulting in high false alarm rates. Therefore, their universality needs to be further
improved. ER-Fuzz proposes using deep learning for classification to eliminate the limitations
of complex operations and heuristic methods that require extracting features manually.
Word2vec and LSTM have been widely used and have achieved good results in text
classification.
 Word2vec is a two-layer neural network that is very efficient at processing text. It takes
text as input and outputs a feature vector of the words in the input text, which is useful in
making computers understand natural language. However, Word2vec is not just useful for
parsing natural-language statements, it is also useful for performing pattern recognition in
code. The output of Word2vec is a vocabulary that contains the vectors for all the words within
the limited frequency of the text corpus. These vectors can be fed into a deep learning network.
 The Long Short Term Memory network (LSTM), is a recurrent neural network (RNN)
branch that solves the bottleneck of RNN in dealing with long-term dependence. The LSTM
architectural unit includes memory units tC with three gates, namely, an input gate ti , an

output gate to and forgetting gate tf . The state of the LSTM unit depends not only on the

current state of tx but also on the previous state. The LSTM cell calculation steps are as
follows:

1([,]))t t t ii Wi h x b−= σ + (7)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019 3519

1([,])t f t t ff W h x b−= σ + (8)

1([,])t o t t oo W h x b−= σ + (9)


1tanh([,])t c t t cC W h x b−= + (10)
1t t t t tC f C i C= − +  (11)

tanh()t t th o C=  (12)
 The three gates determine when new input is allowed, when the current cell state is
cleared, and when the cell state affects the current network input. LSTM implements
long-term memory by storing and modifying state information.

3. Design and Implementation
 This section introduces the specific implementation of ER-Fuzz, mainly from the
following two aspects. First, the entire system is introduced, including its components and
functions. Second, the design and implementation of the two modules are introduced and
analyzed in detail.

3.1 Overview
 The system is mainly composed of two parts. The first part addresses error-handling code
fragment recognition in the test program. This part extracts all conditional construction code
fragments in the program; then, it applies the classification model obtained by Word2vec and
LSTM to predict whether each fragment constitutes is an error-handling code segment. The
second part addresses path record truncation. All the error-handling code segments obtained
through the classification are input to the lightweight instrumentation module, which inserts
instrumentation at the corresponding positions in the source file based on defined
instrumentation rules.

Dataset

Word2vec and
LSTM neural

network

Classify
model

Light
instrumentation

model

Target
program

Classify
model ER-Fuzz Crash

Fig. 4. ER-Fuzz workflow

3.2 Error-handling code identification
 There are two phases in identifying error-handling code segments: a training phase and a
detection phase. In the training phase, a large number of source code files from open source

3520 Song et al.:ER-Fuzz：Conditional Code Removed Fuzzing

projects are selected and preprocessed to obtain code fragments, which are vectorized and
used as the input to the neural network model. Finally, a trained classification model is
obtained.

source.c
Extract

the error code
structure

Extract token
sequence

Token Vector

if V1

(

ret

…

V2

V3

…

LSTM LSTM LSTM LSTM

 [v1 v2 v3 v4…]

Training
model

 Fig. 5. Training stage

3.2.1 Construction of the LSTM error-handling code classifier
 Training models usually include several steps due to the particularities of error-handling
code, such as differences in their structural characteristics compared to normal codes as well
as the complexity of the entire code structure, such as whether they contain nested structures,
and so on. Therefore, we need to solve a specific case of data preprocessing, labeling, and the
problem of vectorization. The following is a detailed description of these problems.

Error-handling structure extraction method

The symbols required in the method description are defined first, as shown in Table 2.

Table. 2. Symbols to describe

Symbols Describe

oS Source files before preprocessed

nS Source files after preprocessed
R Regular expression

eI if-else structure collection

tI Current if-else structure

nI Nested if-else structure

rI Non-nested if-else structure

lB Left parenthesis

rB Right parenthesis

sC The number of brackets in the stack

lC The number of brackets in the stack at the end of the current structure
E Error-handling code structures

 First, oS needs to be preprocessed to remove unnecessary information, such as code

comments, line feeds, and so on. R is used to effectively extract code and obtain nS . After

processing, nS has been extracted from eI . We propose a balance based on stack padding

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019 3521

with brackets, which is eI I∀ ∈ , 0lC ≡ . Therefore, we build a similar stack structure when

lB is recognized, then 1sC + , when rB is recognized, then 1sC − , when 0sC = , tI is

added to eI . At the same time, the corresponding relationship between the code segment and
the source file location is recorded for subsequent instrumentation. However, nested structures

nI will appear after extraction, causing misjudgments. For example, 1 2&n nI E I E∈ ∉ and
1 2
n n nI I I+ = , if the model determines that nI E∈ , then 2

nI E∈ , which results in a conflict.

Therefore, nI needs to be iterated to ensure that the extracted code fragment is minimized: eI
needs to be extracted from the first extraction following the same approach until each structure
is an rI . Listing 2 shows an extracted code snippet.

Listing. 2. Extraction code snippets

1: if (!frame→buf[i]) {

2: av_frame_unref(frame);

3: return AVERROR(ENOMEM);

4: }

Code parsing based abstract syntax tree (AST)

 The extracted code fragment is parsed into a word sequence, and all the fragments are
parsed into an equal-length sequence in this step for easy input into the LSTM network. An
abstract syntax tree (AST) [27] is used to extract the code sequences in the parsing phase.
Simultaneously, symbolization is carried out. For example, an integer is represented as num
and a string is represented as str. However, in this classification, the string contents will have
some impact, as shown in Listing 3.

Listing. 3. A code segment containing a string

1: if (!f) {

2: fprintf(stderr, "%s: I/O error\n", filename);

3: exit(1);

4: }

We have studied that most error-handling code fragments contain one feature. That is, if the
code fragment contained a string, the string usually contains the words error, fail or other
words with similar meanings. Therefore, we use two methods for string symbolization,
including whether the string contain special keywords. These symbols are specifically
expressed as errstr and str. In Listing 3, for example, the resolved form would be similar to ['
if ', '(','. ', 'f', ') ', '{',' fprintf ', '(',' stderr ', ', ', 'errstr', 'filename'..]. Although some fault-indicating
expressions are extracted by the previous analysis, their number is limited. WordNet [28] is
used to extend this process. WordNet is an English dictionary, established and maintained by
Princeton University. The words grouped by definitions, and each entry with the same
meaning constitutes a collection of synonyms. We can use this group of entries to expand the

3522 Song et al.:ER-Fuzz：Conditional Code Removed Fuzzing

vocabulary of fault-indicating expressions.

Error Fault Wrong ...

Fig. 6. Vocabulary expansion

Heuristics-based labeling

 Because our approach adopts supervised learning, each sample needs to be labeled. A
code segment that belongs to an error-handling code segment will be marked as 1. Otherwise,
it will be marked as 0. Code snippets are labeled heuristically. The following five heuristics
are summarized from the analysis of a large number of source files.

1) An if structure usually includes one and more comparisons as shown in Listing 4
2) If the segment contains a string, the string contains an error expression.
3) The segment may contain return or jump keywords such as return, goto, etc.
4) If the segment contains functions, the function name usually includes an error

expression, as shown in Listing 4.
5) The segment may contains system error-macro definitions, such as 'EPERM',

'ENOENT', etc.

Listing. 4. A code segment containing a comparison

1: if (ret != length)

2: png_error(png_ptr, "PNG Write Error");

Listing. 5. A code segment containing an error macro definition

1: if (strncmp(dev_name, prefix, strlen(prefix)))

2: return ENODEV;

Input vectorization and LSTM network training

 The obtained token sequences are used as input for the vectorization process. We use
Word2vec, a tool widely used for text vectorization. The word vector model is obtained by
setting the feature vector dimension and the word frequency parameter. The vocabulary index
and word vector dictionary are established based on the model and used as input to the
subsequent LSTM model. Different sections of code contain different numbers of tokens;
however, the LSTM can accept only input vectors of a given length. Therefore, the vectors
need to be padded or pruned. After obtaining the code segment vectorization results and the
code segment labels, the LSTM network can be trained. In addition to the necessary embedded
layers [29,30], LSTM units such as basic and dropout layers are added to avoid overfitting to
some degree.

3.2.2 Error code detection based on the trained model
 The detection phase is used to detect the type of a given code fragment. If a block of code
consists of error-handling code, the trained model will output the file to which it belongs and
the fragment's location in the source file. Given an unknown project, the specific detection
process is as follows.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019 3523

1. Extract the error-handling code snippet structures from each project file and record the
file name and locations to which they belong

2. Analyze the code fragment to obtain a corresponding token sequence
3. Use the previously trained Word2vec model to vectorize the token sequence obtained

in step 2 according to the preceding rules
4. Input the obtained vector into the trained LSTM network for classification

3.3 Record truncation based on lightweight instrumentation

 Lightweight instrumentation mainly involves instrumenting source code and optimizing
the fuzzer instrumentation. The goal of the first part is to find the proper location in the source
code to instrument. The second part determines the path record truncation based on the
instrumented source code.

Instrumentation position analysis and code structure repair

 Based on the result of the classification model and combined with the index of the if-else
structure location in the source file, the error-handling code segment is instrumented using
both internal and external instrumentation. Listing 6 shows an example. Because an if
statement is compiled as a conditional jump instruction, the fuzzer instrumentation is
determined by the conditional jump instruction. Therefore, instrumentation added before an if
structure can influence whether subsequent basic blocks have been instrumented.
Instrumentation added before the first statement of the if structure can determine the recording
mode of the subsequent basic blocks. Because the first statement is the beginning of a basic
block after a jump instruction, a conditional jump instruction may still exist in subsequent
execution; therefore, the first statement determines the recorded results of traversing all the
subsequent basic blocks on this block path containing if structures. Specific reasons will be
explained later in this paper. There are three main situations.
1) Within an if structure

Listing. 6. if structure code fragment

1: if (ret < 0) {

2: response = xasprintf("Device '%s' can not be detached", argv[1]);

3: goto error;

4: }

 In the first case, the error-handling code is inside the if structure. In this case, the code
only needs to be instrumented before the if statement and the first statement in the if structure.
2) Within an else structure

Listing. 7. else structure code fragment

1: else {

2: VLOG_WARN("tc: Invalid policy '%s'", policy);

3: return;

4: }

 In this case, error-handling code also appears in the else structure; therefore, it is
necessary to instrument the first statement in the else structure as well as the adjacent if
statement before the else structure. If the preorder structure is else if structure, the else if

3524 Song et al.:ER-Fuzz：Conditional Code Removed Fuzzing

structure needs to be transformed into an if structure (as shown in Fig. 11) and then
instrumented before the if.

…

else if () {
…

 }

…

else {
 if () {

 …

 }
 }

Fig. 11. else if structure transformation

3) Within an else if structure
Listing. 8. else if structure code segment

1: else if (*total_len < pin->packet_len) {

2: VLOG_WARN_RL(&bad_ofmsg_rl, "NXT_PACKET_IN2 claimed full_len < len");

3: return OFPERR_OFPBRC_BAD_LEN;

4: }

 In the third case, the error-handling code appears inside an else if structure. After
performing the process shown in Fig. 11, this code is instrumented before the if statement and
before the first statement in the else if structure. When performing else if instrumentation, the
original code structure is broken and must be fixed to ensure that the code compiles and runs
correctly. Algorithm 1 is used to repair the source code structure.

Algorithm 1 Integrity Repair
1:procedure Repair(current struct)
2: neighbor struct = current struct→next
3: while neighbor struct do
4: switch neighbor structure do
5: case if struct then
6: if neighbor struct is nest then
7: goto next
8: else then
9: INTEGRITY (end of latest else-if struct)
10: end if
11: case else struct then
12: if neighbor struct is nest then
13: goto next
14: else then
15: INTEGRITY(end of neighbor struct)
16: end if
17: case else-if struct then
18: goto next
19: end while
20: next:
21: neighbor struct = neighbor struct→next
22: continue
23: end procedure

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019 3525

 After executing the above algorithm, the program can be compiled and run accurately.

Path recording truncation based on lightweight instrumenting

 The fuzzer instrumentation process is performed after the source file has been compiled
into assembly code. Thus, the source code is instrumented by assembly code in this part. The
mapping of shared memory, records of branch information and so on are implemented in the
original instrumentation to collect the coverage information statistics. ER-Fuzz achieves the
function of subsequent record cancellation by inserting the continue_log flag in the source
code. Informally, we call continue_log named as record flag. This flag is defined in the BSS
segment. Because the BSS segment contains uninitialized, this segment's memory is cleared
before each round. Therefore, this flag can be set to 1 to indicate that subsequent basic blocks
should no longer be recorded. By searching the continue_log at the entrance point of the
original instrumenting code, when the flag is 1, the code can jump to the return statement to
cancel the record of the basic block. The flag is subsequently always marked as 1 ; therefore,
subsequent basic blocks are no longer recorded. That is, if the original path is 1→2→3→…
and 3 contains the flag, the record becomes 1→2. At the beginning of the next round of testing,
the flag is cleared to allow a normal execution path recorded. However, such instrumentation
can occur in two situations, as shown in Fig. 7 and Fig. 8.

Block1
(instrumentation)

continue_log=1
Block2

Block3
(instrumentation)

Block4
(instrumentation)

Block5

Block1
(instrumentation)

continue_log=1
Block2

(instrumentation)
Block3

Block4
(instrumentation)

Block5

Fig. 7. Flag in uninstrumented basic block Fig. 8. Flag in instrumented basic block

Fig. 9. Uninstrumented basic block Fig. 10. Instrumented basic block

 If a record flag is inserted after the instrumentation code (Fig. 10), the basic block is still
logged. Although subsequent blocks will not continue recording because the flag has been set
to 1, this record will still be considered to have generated a new path so that the test sample is
retained, which fails to accomplish the goal. Therefore, as shown in Fig. 10, the original
instrumentation for the current conditional jump needs to be cancelled.
 Because it should not affect the normal execution flow of the program, a nop instruction
is used for instrumentation and another flag is added at the instruction annotation. Because the

…
call __afl_maybe_log
…

mov ds:continue_log, 1
…

jmp loc_40091D

…
mov ds:continue_log, 1
…

jmp loc_40091D

3526 Song et al.:ER-Fuzz：Conditional Code Removed Fuzzing

assembly code annotation is not cleared after the source code is compiled as assembly code,
the annotation can determine to cancel original instrumentation. When an annotation flag is
encountered, an instrumentation flag is assigned. When the conditional jump instruction is
encountered, the instrumentation is judged according to this flag; then, the flag is cleared. The
process will be repeated until all the code has been instrumented. In this way, the subsequent
code block can skip the instrumentation process. The statement if (i! =0) assembles
instructions in different source files because of compile optimization, which may include JZ or
JNZ opcodes, etc. The original instrumentation is performed only at the point of a negative
jump. ER-Fuzz responds to the above situation by eliminating instrumentation at branches
with flags. Although a basic block record is cancelled, the information concerning the
effective path is not affected.
 The advantage of this method is that when a sample exists that can meet the condition
check during the continuous mutation process, the previously retained wrong sample will no
longer be used to conduct mutation. Instead, ER-Fuzz will invest resources in samples that are
more likely to generate new paths.

4. Experiments and Results
 We implemented ER-Fuzz using both Python and C. We evaluated and compared the
classification model used for error-handling code identification. In addition, we selected real
applications to evaluate the performance of ER-Fuzz in terms of both code coverage and crash
findings.

4.1 Error-handling code identification
 A classification model is usually evaluated using accuracy and F-score metrics, which are
calculated as follows:

TP TN
Accuracy

TP TN FP FN
+

=
+ + +

*
1 2*

precision recall
F score

precision recall
− =

+

TP
Precision

TP FP
=

+

TP
Recall

TP FN
=

+

 True Positive (TP) and True Negative (TN) belong to the cases in which samples of type
1 and type 2 are correctly classified, and False Positive (FP) and False Negative (FN) belong to
the cases in which samples of type 1 and type 2 are incorrectly classified. The accuracy rate
reflects the model's prediction accuracy over the entire dataset and is usually used to evaluate
classifier performance. However, in the case of unbalanced datasets, the accuracy score may
be misleading. As a harmonic average from P and R, the comprehensive results (F1-score) can
better evaluate the effectiveness of the model. For a dataset, we selected ten widely used open
source projects developed in C/C++, including mpg123-1.25.10, libpng-1.6.35, Open
vSwitch-2.9.0, libtiff-4.0.8, ImageMagick-7.0.8, Exiv2-0.26, libbpg-0.9.8, libming-0.4.8,
libraw-0.19, libpcap-1.7.4. We calculated the size of each project, the number of C/C++
source files it contained, and the number of error-handling code structures. In total, the number

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019 3527

of error code sections collected was 16,968, and the number of normal code sections was
20,000. We randomly chose 10,200 error code sections and 12,000 normal code sections as the
training set. A total of 3,400 error code sections and 4,000 normal code sections were
randomly chosen as the test set and the same numbers of sections were used for the verification
set.

Table. 3. Data set information statistics
Applications Size（MB） Files(c/cpp) EH
mpg123-1.25.10 4.15 103 623
libpng-1.6.35 5.67 115 1031
Open vSwitch-2.9.0 50.3 384 3959
libtiff-4.0.8 1.33 114 1287
ImageMagick-7.0.8 50.8 275 1442
Exiv2-0.26 51.9 138 75
libbpg-0.9.8 12 158 212
libming-0.4.8 21 188 1281
libraw-0.19 2.45 28 198
libpcap-1.7.4 3.11 63 933

 Several rounds of training were conducted for different times on the training set. The results
of each training round were statistically analyzed. The experimental results showed that after
10 training sessions, the accuracy rate and callback rate were stable at approximately 0.97, and
the effect was significant.

Table. 4. classification model experimental results

Epoch Validation
accuracy

Validation
loss

Testing
accuracy

Testing
loss Precision Recall F-score

5 0.946 0.156 0.942 0.151 0.993 0.889 0.938
5 0.962 0.139 0.957 0.124 0.971 0.947 0.959
5 0.946 0.143 0.951 0.117 0.992 0.890 0.938

10 0.968 0.116 0.968 0.095 0.969 0.960 0.965
10 0.968 0.115 0.957 0.116 0.963 0.966 0.965
10 0.971 0.123 0.969 0.085 0.975 0.962 0.968
20 0.972 0.106 0.979 0.060 0.986 0.953 0.969
20 0.973 0.101 0.971 0.085 0.970 0.972 0.971
20 0.971 0.109 0.967 0.095 0.971 0.966 0.968
30 0.973 0.095 0.962 0.106 0.977 0.966 0.971
30 0.975 0.109 0.956 0.121 0.984 0.961 0.972
30 0.973 0.110 0.970 0.099 0.975 0.967 0.971

 As a comparison, we refer to the data reported for IdenEH. The comparison results are
shown in Table 5. The model using LSTM is superior to the decision tree model.

Table. 5. LSTM and Decision tree model comparison
Model Precision Recall F-score

Decision tree 0.860 0.840 0.849
LSTM 0.970 0.972 0.971

3528 Song et al.:ER-Fuzz：Conditional Code Removed Fuzzing

4.2 Various Applications
 We used a set of applications as the test data set (mpg123-1.25.10, exiv2-0.26,
tcptrace+libpcap-1.7.4, swftotcl+libming-0.4.8) to evaluate the performance of ER-Fuzz on
different volumes of error-handling code. AFLFast was selected for comparative testing in
consideration of its representativeness and its open source status among coverage-based
fuzzing methods (while other representative tools exist, most are not open source). In this
performance comparison, we ran AFL and AFLFast in the same environment and evaluated
them on 4 applications under the same configuration, i.e., a virtual machine configured with a
4 core 2GHz Intel CPU and 4 GB of RAM running Ubuntu 15.10. Each program was
evaluated for 12 hours. The test metrics include code coverage and the number of crash
triggers.

Fig. 11. swftotcl Fig. 12. Exiv2

Fig. 13. mpg123 Fig. 14. Tcptrace

 Figs. 11-14 show coverage comparison diagrams of AFLFast, AFL, and ER-Fuzz, where
the X-axis represents the test time, and the Y-axis represents the number of new samples
generated. No obvious differences appear at the beginning of the test, but after a period of time,
AFL finds new paths at a slower rate than does ER-Fuzz. This result occurs because ER-Fuzz
pays more attention to the low-frequency samples in the sample set, which substantially
increases the coverage rate. As shown, on swftotcl and tcptrace, ER-Fuzz achieved improved
coverage compared with AFL and AFLFast. However, on the other two projects, ER-Fuzz was
not as effective as AFLFast. This result is mainly related to the number of error-handling code
structures in the project. In other words, when the error-handling code structures constitute a
larger proportion of the project, the effect of ER-Fuzz becomes more significant. In contrast,

0 2 4 6 8 10 12

0

1000

2000

3000

4000

N
um

be
r o

f T
es

t I
np

ut
s(

#)

Time(h)

 AFL
 ER-Fuzz
 AFLFast

0 2 4 6 8 10 12

200

300

400

500

600

700

800

N
um

be
r o

f T
es

t I
np

ut
s(

#)

Time(h)

 AFL
 ER-Fuzz
 AFLFast

0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

N
um

be
r o

f T
es

t I
np

ut
s(

#)

Time(h)

 AFL
 ER-Fuzz
 AFLFast

0 2 4 6 8 10 12

0

200

400

600

800

1000

1200

1400

N
um

be
r o

f T
es

t I
np

ut
s(

#)

Time(h)

 AFL
 ER-Fuzz
 AFLFast

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019 3529

when the proportion of error-handling code is relatively low, the improvement may not be
obvious, such as on the Exiv2 project. In all cases, no obvious change occurs at the early stage
because during the early stage of testing, few paths are covered, and new paths grow relatively
quickly.
 In addition, we compared the number of crash findings. In two of these projects, ER-Fuzz
found more crashes than did AFL and AFLFast. However, for Exiv2, where the number of
error-handling structures is small, ER-Fuzz found fewer crash triggers than did AFLFast.
During this process, ER-Fuzz found seven 0 day vulnerabilities, and CVEs were assigned.

Fig. 12. Comparison of crash amount

Table 6. Vulnerability List

exiv2-0.26
CVE-2018-10958
CVE-2018-10998
CVE-2018-10999
CVE-2018-11037

libming-0.4.8
CVE-2018-13066
CVE-2018-13250
CVE-2018-13251

5. Conclusion
 In this paper, we studied the influence of high-frequency paths on fuzzing efficiency and
proposed a fuzzing solution, ER-Fuzz, which resolves the issue of high-frequency path
samples affecting the efficiency of the state-of-art fuzzer AFL. We proposed an
instrumentation method that influences path record truncation to steer the fuzzer toward
unexplored paths. In the experiments, four applications were tested and compared. The code
coverage and the number of crashes found by ER-Fuzz were significantly higher than those of
AFL; moreover, ER-Fuzz found seven-day vulnerabilities during the experiment. These
experimental results verify the influence of high-frequency paths in overall testing. In future
research, we plan to investigate whether the advantages of directed fuzzing technology can be
integrated, such as concolic execution, to further improve the breakthrough time of complex
condition detection or magic byte detection. In addition, we plan to address situations
involving multicondition judgments and functions in judgments.

tcptrace

swftotcl

Exiv2

mpg123

0 50 100 150 200 250 300

Ap
pl

ic
at

io
n

 AFLFast
 ER-Fuzz
 AFL

3530 Song et al.:ER-Fuzz：Conditional Code Removed Fuzzing

6. Acknowledgments
 This work was supported by the Ministry of Science and Technology of China under
Grant 2017YFB0802901.

References
[1] Sutton M, Greene A, Amini P, “Fuzzing: brute force vulnerability discovery,” Pearson Education,

2007.
[2] CAO Yan, “Research on Software Vulnerability Analysis Oriented Parallel Symbolic Execution,”

2013.
[3] Cristian Cadar, Daniel Dunbar, and Dawson Engler, “KLEE: Unassisted and Automatic

Generation of High-coverage Tests for Complex Systems Programs,” in Proc. of the 8th USENIX
Conference on Operating Systems Design and Implementation (OSDI’08), vol. 8, pp. 209-224,
December, 2008.

[4] James Newsome, Dawn Song, James Newsome, and Dawn Song, “Dynamic taint analysis:
Automatic detection, analysis, and signature generation of exploit attacks on commodity software,”
in Proc. of the 12th Network and Distributed Systems Security Symposium (NDSS), 2005

[5] Andrew Henderson, Lok Kwong Yan, Xunchao Hu, Aravind Prakash, Heng Yin, Stephen
McCamant, “DECAF: A Platform-Neutral Whole-System Dynamic Binary Analysis Platform,”
IEEE Transactions on Software Engineering, vol. 43, no. 2, pp. 164–184, 2017.
Article (CrossRef Link).

[6] Stephens, Nick, et al., “Driller: Augmenting Fuzzing Through Selective Symbolic
Execution,” NDSS, vol. 16, pp. 1-16, February, 2016. Article (CrossRef Link).

[7] R. Majumdar and K. Sen, “Hybrid concolic testing,” in Porc. of ICSE’07. Washington, DC, USA:
IEEE Computer Society, pp. 416–426, 2007. Article (CrossRef Link).

[8] Rawat, Sanjay, et al., “VUzzer: Application-aware evolutionary fuzzing,” in Porc. of the Network
and Distributed System Security Symposium (NDSS), February, 2017. Article (CrossRef Link).

[9] Böhme, Marcel, Van-Thuan Pham, and Abhik Roychoudhury, “Coverage-based greybox fuzzing
as markov chain,” in Porc. of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, pp. 1032-1043, 2016. Article (CrossRef Link).

[10] J. R. Norris, “Markov Chains (Cambridge Series in Statistical and Probabilistic Mathematics),”
Cambridge University Press, July 1998.

[11] Jääskelä E, “Genetic Algorithm in Code Coverage Guided Fuzz Testing,” University of Oulu,
2016.

[12] M. Zalewski, “American fuzzy lop,”. Article (CrossRef Link).
[13] Mikolov, Tomas, et al., “Efficient estimation of word representations in vector space,” arXiv

preprint arXiv:1301.3781, 2013.
[14] Hochreiter, Sepp, and Jürgen Schmidhuber, “Long short-term memory,” Neural computation, vol.

9, no.8, pp. 1735-1780, 1997. Article (CrossRef Link).
[15] Li, Yuekang, et al., “Steelix: program-state based binary fuzzing,” in Porc. of the 2017 11th Joint

Meeting on Foundations of Software Engineering. ACM, pp. 627-637, August, 2017.
Article (CrossRef Link).

[16] Tian, Yuchi, and Baishakhi Ray, “Automatically diagnosing and repairing error handling bugs in
c,” in Porc. of the 2017 11th Joint Meeting on Foundations of Software Engineering. ACM, pp.
752-762, August, 2017. Article (CrossRef Link).

[17] Jana, Suman, et al., “Automatically Detecting Error Handling Bugs Using Error
Specifications,” USENIX Security Symposium, pp. 345-362, August, 2016.

[18] Mitchell M, “An introduction to genetic algorithms,” MIT press, 1998.
[19] Shastry B, Maggi F, Yamaguchi F, et al., “Static exploration of taint-style vulnerabilities found by

fuzzing,”arXiv preprint arXiv:1706.00206, 2017.

https://doi.org/10.1109/TSE.2016.2589242
https://doi.org/10.14722/ndss.2016.23368
http://dx.doi.org/10.1109/ICSE.2007.41
https://doi.org/10.14722/ndss.2017.23404
https://doi.org/10.1145/2976749.2978428
http://lcamtuf.coredump.cx/afl
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/3106237.3106295
https://doi.org/10.1145/3106237.3106300

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019 3531

[20] Godefroid, Patrice, Hila Peleg, and Rishabh Singh, “Learn&fuzz: Machine learning for input
fuzzing,” in Porc. of the 32nd IEEE/ACM International Conference on Automated Software
Engineering. IEEE Press, pp. 50-59, October, 2017. Article (CrossRef Link).

[21] Chen, Peng, and Hao Chen, “Angora: Efficient Fuzzing by Principled Search,” arXiv preprint
arXiv:1803.01307, 2018.

[22] Mouzarani, Maryam, Babak Sadeghiyan, and Mohammad Zolfaghari, “Smart fuzzing method for
detecting stack-based buffer overflow in binary codes,” IET Software, vol. 10, no. 4, pp. 96-107,
2016. Article (CrossRef Link).

[23] Böhme, Marcel, et al., “Directed greybox fuzzing,” in Porc. of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. ACM, pp. 2329-2344, October, 2017.
Article (CrossRef Link).

[24] Hsu, Chin-Chia, et al., “INSTRIM: Lightweight Instrumentation for Coverage-guided Fuzzing,”.
Article (CrossRef Link).

[25] Liu, Jinyu, et al., “IdenEH: Identify error-handling code snippets in large-scale software,” in Porc.
of Computational Science and Its Applications (ICCSA), 2017 17th International Conference on.
IEEE, pp. 1-8, July, 2017. Article (CrossRef Link).

[26] Bottou, Léon, Frank E. Curtis, and Jorge Nocedal, “Optimization methods for large-scale machine
learning,” SIAM Review, vol. 60, no. 2, pp. 223-311, 2018. Article (CrossRef Link).

[27] Rabinovich, Maxim, Mitchell Stern, and Dan Klein, “Abstract syntax networks for code
generation and semantic parsing,” arXiv preprint arXiv:1704.07535, 2017.

[28] Miller, George A, “WordNet: a lexical database for English,” Communications of the ACM, vol. 38,
no. 11, pp. 39-41, 1995. Article (CrossRef Link).

[29] Liao, Xin, Zheng Qin, and Liping Ding, “Data embedding in digital images using critical
functions,” Signal Processing: Image Communication, vol. 58, pp. 146-156, 2017.
Article (CrossRef Link).

[30] Liao, Xin, Qiaoyan Wen, and Jie Zhang, “Improving the Adaptive Steganographic Methods Based
on Modulus Function,” IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, vol. 96, no. 12, pp. 2731-2734, 2013. Article (CrossRef Link).

https://doi.org/10.1109/ASE.2017.8115618
https://doi.org/10.1049/iet-sen.2015.0039
https://doi.org/10.1145/3133956.3134020
http://dx.doi.org/doi:10.14722/bar.2018.23014
http://dx.doi.org/10.1109/ICCSA.2017.7999649
https://doi.org/10.1137/16M1080173
https://doi.org/10.1145/219717.219748
https://doi.org/10.1016/j.image.2017.07.006
https://doi.org/10.1587/transfun.E96.A.2731

3532 Song et al.:ER-Fuzz：Conditional Code Removed Fuzzing

Xiaobin Song, M.A. degree candidate of The China National Digital Switching System
Engineering and Technological Research Center. His research interests include Software
Vulnerability and Cyberspace Security.

Zehui Wu, received Ph.D degree from The China National Digital Switching System
Engineering and Technological Research Center. He is currently a lecturer at China National
Digital Switching System Engineering and Technological Research Center. His research
interests include Software Vulnerability and Software-Defined Networking(SDN).

Yan Cao, received Ph.D degree from The China National Digital Switching System
Engineering and Technological Research Center. He is currently a lecturer at China National
Digital Switching System Engineering and Technological Research Center. His research
interests include Software Vulnerability and Program analysis.

Qiang Wei is a professor and doctoral tutor at China National Digital Switching System
Engineering and Technological Research Center, Zhengzhou, China. His research interests
include Software Vulnerability and Cyberspace Security.

