• Title/Summary/Keyword: condition analysis

Search Result 17,995, Processing Time 0.041 seconds

Image Analysis and DC Conductivity Measurement for the Evaluation of Carbon Nanotube Distribution in Cement Matrix

  • Nam, I.W.;Lee, H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.427-438
    • /
    • 2015
  • The present work proposes a new image analysis method for the evaluation of the multi-walled carbon nanotube (MWNT) distribution in a cement matrix. In this method, white cement was used instead of ordinary Portland cement with MWNT in an effort to differentiate MWNT from the cement matrix. In addition, MWNT-embedded cement composites were fabricated under different flows of fresh composite mixtures, incorporating a constant MWNT content (0.6 wt%) to verify correlation between the MWNT distribution and flow. The image analysis demonstrated that the MWNT distribution was significantly enhanced in the composites fabricated under a low flow condition, and DC conductivity results revealed the dramatic increase in the conductivity of the composites fabricated under the same condition, which supported the image analysis results. The composites were also prepared under the low flow condition (114 mm < flow < 126 mm), incorporating various MWNT contents. The image analysis of the composites revealed an increase in the planar occupation ratio of MWNT, and DC conductivity results exhibited dramatic increase in the conductivity (percolation phenomena) as the MWNT content increased. The image analysis and DC conductivity results indicated that fabrication of the composites under the low flow condition was an effective way to enhance the MWNT distribution.

Behavior Analysis on Earthquake-Induced Deformation of Quay Wall and Apron in Ground at Youngilman Port Considering Drainage Condition Using FEM Analysis (FEM 해석에 의한 지반배수조건에 따른 지진 시 영일만항의 케이슨식 안벽 및 배후지의 거동 분석)

  • Lee, Hak-Ju;Kang, Gi-Chun;Hwang, Woong-Ki;Lee, Min-Sun;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.386-394
    • /
    • 2019
  • In this study, according to drainage condition (undrained and drained) in ground, the settlement and horizontal displacement of caisson quay wall and apron in Yeongilman port due to excess pore water pressure in ground induced by the magnitude 5.4 earthquake in Pohang on November 15, 2017. In general, seismic response analysis was carried out under undrained drainage condition, but in this study, drain drainage analysis was conducted to estimate displacement during earthquake as well as an additional displacement due to dissipation of excess pore water pressure after earthquake. The result of after earthquake can not be known under undrained drainage condition. Results cleary showed that the behavior of structure and ground was dependent on drainage condition in ground. Especially, based on the drained drainage condition, the additional displacement was clearly detected due to dissipation of excess pore water pressure after earthquake. Which indicates that both results are different to drainage condition in ground, and therefore, drainage condition analysis is necessary to accurately estimate the behavior of ground and structure in seismic response analysis.

Anticorrosive Monitoring and Complex Diagnostics of Corrosion-Technical Condition of Main Oil Pipelines in Russia

  • Kosterina, M.;Artemeva, S.;Komarov, M.;Vjunitsky, I.;Pritula, V.
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.208-211
    • /
    • 2008
  • Safety operation of main pipelines is primarily provided by anticorrosive monitoring. Anticorrosive monitoring of oil pipeline transportation objects is based on results of complex corrosion inspections, analysis of basic data including design data, definition of a corrosion residual rate and diagnostic of general equipment's technical condition. All the abovementioned arrangements are regulated by normative documents. For diagnostics of corrosion-technical condition of oil pipeline transportation objects one presently uses different methods such as in-line inspection using devices with ultrasonic, magnetic or another detector, acoustic-emission diagnostics, electrometric survey, general external corrosion diagnostics and cameral processing of obtained data. Results of a complex of diagnostics give a possibility: $\cdot$ to arrange a pipeline's sectors according to a degree of corrosion danger; $\cdot$ to check up true condition of pipeline's metal; $\cdot$ to estimate technical condition and working ability of a system of anticorrosive protection. However such a control of corrosion technical condition of a main pipeline creates the appearance of estimation of a true degree of protection of an object if values of protective potential with resistive component are taken into consideration only. So in addition to corrosive technical diagnostics one must define a true residual corrosion rate taking into account protective action of electrochemical protection and true protection of a pipeline one must at times. Realized anticorrosive monitoring enables to take a reasonable decision about further operation of objects according to objects' residual life, variation of operation parameters, repair and dismantlement of objects.

Review of Application Cases of Machine Condition Monitoring Using Oil Sensors (윤활유 분석 센서를 통한 기계상태진단의 문헌적 고찰(적용사례))

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.307-314
    • /
    • 2020
  • In this paper, studies on application cases of machine condition monitoring using oil sensors are reviewed. Owing to rapid industrial advancements, maintenance strategies play a crucial role in reducing the cost of downtime and improving system reliability. Consequently, machine condition monitoring plays an important role in maintaining operation stability and extending the period of usage for various machines. Machine condition monitoring through oil analysis is an effective method for assessing a machine's condition and providing early warnings regarding a machine's breakdown or failure. Among the three prevalent methods, the online analysis method is predominantly employed because this method incorporates oil sensors in real-time and has several advantages (such as prevention of human errors). Wear debris sensors are widely employed for implementing machine condition monitoring through oil sensors. Furthermore, various types of oil sensors are used in different machines and systems. Integrated oil sensors that can measure various oil attributes by incorporating a single sensor are becoming popular. By monitoring wear debris, machine condition monitoring using oil sensors is implemented for engines, automotive transmission, tanks, armored vehicles, and construction equipment. Additionally, such monitoring systems are incorporated in aircrafts such as passenger airplanes, fighter airplanes, and helicopters. Such monitoring systems are also employed in chemical plants and power plants for managing overall safety. Furthermore, widespread application of oil condition diagnosis requires the development of diagnostic programs.

Correlation Analysis about Loop Impedance and Load Condition (루프임피던스와 부하상태의 상관관계 분석)

  • Jung, Jin-Soo;Kim, Han-Sang;Kim, Sun-Gu;Han, Woon-Ki;Park, Chan-Eom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.342-346
    • /
    • 2012
  • This paper presents a loop impedance(inner loop impedance & external impedance) measurement method in TN system. When the measurement of a loop impedance then the measurement result have a some error by load condition. In this paper suggest the loop impedance measurement on actual loading condition by two experiment. one was laboratory condition and the other was the actual measurement on site. Analysis result, measuring error by load condition has not effect on measuring loop impedance.

The Study on the Influence of Working Condition and Job Satisfaction to the Change of Occupation of Cosmetologist (Hair & Skin Care) (미용사(헤어, 피부)의 근무여건과 직무만족이 이직에 미치는 영향에 관한 연구)

  • Kim, Miok;An, Hyeonkyeong
    • Journal of Fashion Business
    • /
    • v.17 no.5
    • /
    • pp.138-150
    • /
    • 2013
  • This paper is purposed to study on the Influence of Working Condition and Job Satisfaction on the change of occupation of Cosmetologist(Hair & Skin Care) to reduce cosmetologist change of occupation. The research methods are surveying with 250 persons & doing statistics analysis such as frequency, factor, regression analysis, using SPSS V.14. The results are as belows; 1. working conditions are reduced by two factors (1) welfare working condition, (2) basic working condition, and job satisfactions are reduced by one factor job satisfaction. 2. There is a relationship demographic characteristics, such as years, income/month, number of colleague in working area, working time/day, day off/month, with change of occupation. 3. There is a relationship working condition with change of occupation. 4. There is a relationship job satisfaction with change of occupation.

Structural Analysis of Continuous Casting Mold (연속주조 몰드의 구조해석)

  • 원종진;이종선;홍석주
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.104-110
    • /
    • 2001
  • The objective of this study is structural analysis of continuous casting mold. A two-dimensional finite element model was developed to compute the temperature distribution, thermal stress and thermal strain behavior for continuous casting mold. Structural analysis was made using thermal analysis result, utilizing transient analysis of ANSYS. This structural analysis results, many variables such as casting speed, cooling condition film coefficient, convection and load condition are considered.

  • PDF

Dynamic analysis of Pine Flat dam-reservoir system utilizing Hagstrom-Warburton truncation boundary condition

  • Solmaz Dehghanmarvasty;Vahid Lotfi
    • Coupled systems mechanics
    • /
    • v.12 no.4
    • /
    • pp.365-389
    • /
    • 2023
  • Dynamic analysis of a typical concrete gravity dam-reservoir system is formulated by FE-(FE-TE) approach (i.e., Finite Element-(Finite Element-Truncation Element)). In this technique, dam and reservoir are discretized by plane solid and fluid finite elements. Moreover, the H-W (i.e., Hagstrom-Warburton) high-order condition imposed at the reservoir truncation boundary. This task is formulated by employing a truncation element at that boundary. It is emphasized that reservoir far-field is excluded from the discretized model. The formulation is initially reviewed which was originally proposed in a previous study. Thereafter, the response of Pine Flat dam-reservoir system is studied due to horizontal and vertical ground motions for two types of reservoir bottom conditions of full reflective and absorptive. It should be emphasized that study is carried out under high order of H-W condition applied on the truncation boundary. The initial part of study is focused on the time harmonic analysis. In this part, it is possible to compare the transfer functions against corresponding responses obtained by FE-(FE-HE) approach (referred to as exact method). Subsequently, the transient analysis is carried out. In that part, it is only possible to compare the results for low and high normalized reservoir length cases. Therefore, the sensitivity of results is controlled due to normalized reservoir length values.

An Estimation on Failure Boundary Condition of Rocker Arm Shaft for 4-Cylinder SOHC Engine Using Orthogonal Array (직교배열표를 이용한 4기통 SOHC 엔진용 로커암 축의 파손경계조건 평가에 관한 연구)

  • Lee, Soo-Jin;Lee, Dong-Woo;Hong, Soon-Hyeok;Cho, Seok-Swoo;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1161-1168
    • /
    • 2005
  • As a result of vehicle maintenance of rocker arm shaft for 4-cylinder SOHC engine, failure analysis of rocker arm shaft is needed. Because more than $30\%$ of vehicles investigated have been fractured. Failure analysis is classified into an naked eyes, microscope and X-ray fractography etc. It can predict applied load as well as load type. These methods are applicable to components with simple boundary condition but aren't applicable to components with complex boundary condition. The existing fractography don't catch hold of failure boundary condition quantitatively. Especially, in case that the components isn't fractured at same position. We must determine the most dangerous failure boundary condition to evaluate their operation mechanism. The effect of various factors on response should be estimated to solve this statical problem. This study presents the most dangerous failure boundary condition of rocker arm shaft using orthogonal array and ANOVA in order to assure its robustness.

Literature Review of Machine Condition Monitoring with Oil Sensors -Types of Sensors and Their Functions (윤활유 분석 센서를 통한 기계상태진단의 문헌적 고찰 (윤활유 센서의 종류와 기능))

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.297-306
    • /
    • 2020
  • This paper reviews studies on the types and functions of oil sensors used for machine condition monitoring. Machine condition monitoring is essential for maintaining the reliability of machines and can help avoid catastrophic failures while ensuring the safety and longevity of operation. Machine condition monitoring involves several components, such as compliance monitoring, structural monitoring, thermography, non-destructive testing, and noise and vibration monitoring. Real-time monitoring with oil analysis is also utilized in various industries, such as manufacturing, aerospace, and power plants. The three main methods of oil analysis are off-line, in-line, and on-line techniques. The on-line method is the most popular among these three because it reduces human error during oil sampling, prevents incipient machine failure, reduces the total maintenance cost, and does not need complicated setup or skilled analysts. This method has two advantages over the other two monitoring methods. First, fault conditions can be noticed at the early stages via detection of wear particles using wear particle sensors; therefore, it provides early warning in the failure process. Second, it is convenient and effective for diagnosing data regardless of the measurement time. Real-time condition monitoring with oil analysis uses various oil sensors to diagnose the machine and oil statuses; further, integrated oil sensors can be used to measure several properties simultaneously.