DOI QR코드

DOI QR Code

Behavior Analysis on Earthquake-Induced Deformation of Quay Wall and Apron in Ground at Youngilman Port Considering Drainage Condition Using FEM Analysis

FEM 해석에 의한 지반배수조건에 따른 지진 시 영일만항의 케이슨식 안벽 및 배후지의 거동 분석

  • 이학주 (한국해양대학교 토목환경공학과) ;
  • 강기천 (경상대학교 토목공학과) ;
  • 황웅기 (지오알앤디) ;
  • 이민선 ((주)HTI코리아 기업부설연구소) ;
  • 김태형 (한국해양대학교 건설공학과)
  • Received : 2019.10.22
  • Accepted : 2019.12.18
  • Published : 2019.12.31

Abstract

In this study, according to drainage condition (undrained and drained) in ground, the settlement and horizontal displacement of caisson quay wall and apron in Yeongilman port due to excess pore water pressure in ground induced by the magnitude 5.4 earthquake in Pohang on November 15, 2017. In general, seismic response analysis was carried out under undrained drainage condition, but in this study, drain drainage analysis was conducted to estimate displacement during earthquake as well as an additional displacement due to dissipation of excess pore water pressure after earthquake. The result of after earthquake can not be known under undrained drainage condition. Results cleary showed that the behavior of structure and ground was dependent on drainage condition in ground. Especially, based on the drained drainage condition, the additional displacement was clearly detected due to dissipation of excess pore water pressure after earthquake. Which indicates that both results are different to drainage condition in ground, and therefore, drainage condition analysis is necessary to accurately estimate the behavior of ground and structure in seismic response analysis.

본 연구에서는 2017년 11월 15일에 포항에서 발생한 규모 5.4의 지진으로 인하여 영일만항의 케이슨식 안벽 및 배후지에서 지반내에 발생된 과잉간극수압으로 유발된 침하와 수평변위를 지반배수조건(즉 비배수조건과 배수조건)에 따라 해석하였다. 일반적으로 비배수조건에서 지진응답해석을 실시하는데 본 연구에서는 배수조건 해석을 실시하여 지진 시 생기는 변위와 지진 이후에 과잉간극수압이 소산하면서 발생하는 추가적인 변위의 결과를 산정하였다. 지진 이후의 결과는 비배수조건의 해석에서는 알 수 없는 부분이다. 두 결과에 대한 비교 분석을 통해 지반배수조건에 따라 구조물과 지반의 거동 차이를 분명하게 확인하였다. 특히 배수조건의 해석 결과에서 지진이후 과잉간극수압 소산에 따른 추가적인 변위가 분명하게 발생하는 것으로 나타났다. 이것은 지진응답해석에서 지반배수조건에 따른 두 해석결과의 차이가 존재하는 것을 보여주는 것으로 지반과 구조물의 거동을 더 명확하게 해석하기 위해서는 배수조건에 대한 해석도 필요하다는 것을 나타내는 것이다.

Keywords

References

  1. Ahn, J.K., Baek, W.H., Choi, J.S. and Kwak, D.Y. (2018). Investigation of pohang earthquake liquefaction using 1D effective stress site response analysis. Journal of the Korean Geotechnical Society, 34(8), 37-49. https://doi.org/10.7843/KGS.2018.34.8.37
  2. FLIP consortium (2017). FLIP ROSE Manual-ver. 7.2.3_6.
  3. Iai, S., Matsunaga, Y. and Kameoka, T. (1992a). Strain space plasticity model for cyclic mobility. Soils and Foundations, 32(2), 1-15. https://doi.org/10.3208/sandf1972.32.2_1
  4. Iai, S., Matsunaga, Y. and Kameoka, T. (1992b). Analysis of undrained cyclic behavior of sand under anisotropic consolidation. Soils and Foundations, 32(2), 16-20. https://doi.org/10.3208/sandf1972.32.2_16
  5. Iai, S. (2000). Seismic design guidelines for port structures. A.A. Balkema Publishers.
  6. Iai, S., Tobita, T., Ozutsumi, O. and Ueda, K. (2011). Dilatancy of granular materials in a strain space multiple mechanism model. International Journal for Numerical and Analytical Methods in Geomechanics, 35(3), 360-392. https://doi.org/10.1002/nag.899
  7. Iai, S., Ueda, K., Tobita, T. and Ozutsumi, O. (2013). Finite strain formulation of a strain space multiple mechanism model for granular materials. International Journal for Numerical and Analytical Methods in Geomechanics, 37(9), 1189-1212. https://doi.org/10.1002/nag.2084
  8. Lee, J.S. and Noh, G.D. (2016). Evaluation of caisson quay wall behavior during the 1995 kobe earthquake by nonlinear effective stress analysis. Journal of Earthquake Engineering Society of Korea, 20(6), 401-412. https://doi.org/10.5000/EESK.2016.20.6.401
  9. Lee, H. and Kim, E. (2011). Damage recovery in Japan after the East Japan earthquake. World Economy Update, 11(22), 1-14.
  10. Kim, S.J., Hwang, W.K., Kim, T.H. and Kang, K.C. (2019). A case study on earthquake-induced deformation of quay wall and backfill in Pohang by 2D-effective stress analysis. Journal of the Korean Geotechnical Society, 35(7), 12-27 (in Korean).
  11. Ministry of Oceans and Fisheries (2018). Port and Fishing Port Design Standards-earthquake (in Korean).
  12. Morita, T., Iai, S., Liu, H., Ichii, K. and Sato, Y. (1997). Simplified method to determine parameter of FLIP. Technical Note of the Port and Harbor Research Institute, No.869, 1-36.
  13. Mun, G.Y. (2018). A Study on the effect of relative density and particle size distribution on the liquefaction resistance strength of sand in Pohang liquefaction region. Master thesis, Pusan National University (in Korean).
  14. Park, S.S. (2008). Liquefaction evaluation of reclaimed sites using and effective stress analysis and an equivalent linear analysis. Journal of Korea Society of Civil Engineering, 28(2), 83-94.
  15. Park, D. and Kwak, D.Y. (2009). Evaluation of liquefaction potential with simplified method and effective-stress site response analysis. Journal of the Korean Geotechnical Society, 25(3), 75-82.
  16. Park, S.S., Nong, Z., Choi, S.G. and Moon, H.D. (2018). Resistance of Pohang Sand. Journal of the Korean Geotechnical Society, 34(9), 5-17 (in Korean). https://doi.org/10.7843/kgs.2018.34.9.5
  17. Shin, W.K. (2003). Estimation of dynamic lateral displacement of caisson quay walls with effective stress analyses for moderate earthquake loading. Master Thesis, Yeonsei University (in Korean).