Browse > Article
http://dx.doi.org/10.9725/kts.2020.36.6.297

Literature Review of Machine Condition Monitoring with Oil Sensors -Types of Sensors and Their Functions  

Hong, Sung-Ho (Dept. of Mechanical System Engineering, Dongguk University-Gyeongju)
Publication Information
Tribology and Lubricants / v.36, no.6, 2020 , pp. 297-306 More about this Journal
Abstract
This paper reviews studies on the types and functions of oil sensors used for machine condition monitoring. Machine condition monitoring is essential for maintaining the reliability of machines and can help avoid catastrophic failures while ensuring the safety and longevity of operation. Machine condition monitoring involves several components, such as compliance monitoring, structural monitoring, thermography, non-destructive testing, and noise and vibration monitoring. Real-time monitoring with oil analysis is also utilized in various industries, such as manufacturing, aerospace, and power plants. The three main methods of oil analysis are off-line, in-line, and on-line techniques. The on-line method is the most popular among these three because it reduces human error during oil sampling, prevents incipient machine failure, reduces the total maintenance cost, and does not need complicated setup or skilled analysts. This method has two advantages over the other two monitoring methods. First, fault conditions can be noticed at the early stages via detection of wear particles using wear particle sensors; therefore, it provides early warning in the failure process. Second, it is convenient and effective for diagnosing data regardless of the measurement time. Real-time condition monitoring with oil analysis uses various oil sensors to diagnose the machine and oil statuses; further, integrated oil sensors can be used to measure several properties simultaneously.
Keywords
function; machine condition monitoring; oil sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Du, L., Zhu, X., Han, Y., Zhao, L., Zhe, J., "Improving sensitivity of an inductive pulse sensor for detection of metallic wear debris in lubricants using parallel LC resonance method" Meas. Sci. Technol., Vol.24, pp.75106, 2013.   DOI
2 Nemarich, C. P., Whitesel, H. K., Sarkady, A., "Online wear particle monitoring based on ultrasonic detection and discrimination", Mater. Eval., Vol.50, pp.525-530, 1988.
3 Xu, C., Zhang, P., Wang, H., Li, Y., Lv, C., "Ultrasonic echo waveshape features extraction based on QPSO-matching pursuit for online wear debris discrimination", Mech. Syst. Signal Process, Vol.60, pp. 301-315, 2015.   DOI
4 Du, L., Zhe, J., "An integrated ultrasonic-inductive pulse sensor for wear debris detection", Smart Mater. Struct., Vol.22, pp.25003, 2013.   DOI
5 Hamilton, A., Cleary, A., Quail, F., "Development of a novel wear detection system for wind turbine gearboxes", IEEE Sens. J., Vol.14, pp.465-473, 2014.   DOI
6 Wu, T., Wu, H., Du, Y., Kwok, N., Peng, Z., "Imaged wear debris separation for on-line monitoring using gray level and integrated morphological features", Wear, Vol.316, pp.19-29, 2014.   DOI
7 Markova, L. V., Makarenko, V. M., Semenyuk, M. S., Zozulya, A, P., "On-line monitoring of the viscosity of lubricating oils", J. Frict. Wear, Vol.31, pp.433-442, 2010.   DOI
8 Markova, L. V., Myshkin, N. K., Kong, H., Han, H. G., "On-line acoustic viscometry in oil condition monitoring", Tribol. Int., Vol.44, pp.963-970, 2011.   DOI
9 Saluja, A., Kalonia, D. S., "Measurement of fluid viscosity at microliter volumes using quartz impedance analysis", AAPS PharmSciTech, Vol.5, pp.e47, 2004.
10 Salzer, S., Jahns, R., Piorra, A., Teliban, I., Reermann, J., Hoft, M., et. al., "Tuning fork for noise suppression in magnetoelectric sensors", Sens. Actuators A Phys., Vol.237, pp.91-95, 2016.   DOI
11 George, S., Balla, S., Gautam, M., "Effect of diesel soot contaminated oil on engine wear", Wear, Vol.262, pp.1113-1122, 2007.   DOI
12 Heinisch, M., Voglhuber-Brunnmaier, T., Reichel, E.K., Dufour, I., Jakoby, B., "Application of resonant steel tuning forks with circular and rectangular cross sections for precise mass density and viscosity measurements", Sens. Actuators A Phys., Vol.226, pp.163-174, 2015.   DOI
13 Mueller, C. J., Pitz, W. J., Pickett, L. M., Martin, G. C., Siebers, D. L., Westbrook, C. K., "Effects of oxygenates on soot processes in DI diesel engines: experiments and numerical simulations", SAE Technical Papers, Vol.1, pp.1791, 2003.
14 Laget, O., Malbec, L-M., Kashdan, J., Dronniou, N., Boissard, R., Gastaldi, P., "Experimental and numerical investigations on the mechanisms leading to the accumulation of particulate matter in lubricant oil", SAE Int. J. Engines, Vol.9, No.4, pp.2030-2043, 2016.   DOI
15 Ulrich, C., Petersson, H., Sundgren, H., Bjorefors, F., Krantz-Rulcker, C., "Simultaneous estimation of soot and diesel contamination in engine oil using electrochemical impedance spectroscopy", Sens. Actuators B Chem., Vol.127, pp.613-618, 2007.   DOI
16 Mortier, R. M., Fox, M. F., Orszulik, S. T., "Chemistry and technology of lubricants, 3rd ed.", London: Springer, 2010.
17 Soleimani, M., Sophocleous, M., Wang, L., Atkinson, J., Hosier, I. L., Vaughan, A. S., et. al., "Base oil oxidation detection using novel chemical sensors and impedance spectroscopy measurements", Sens. Actuators B chem., Vol.199, pp.247-258, 2014.   DOI
18 Holzki, M., Fouckhardt, H., Klotzbucher, T., "Evanescent-fieldfiber sensor for the water content in lubricating oils with sensitivity increase by dielectrophoresis", Sens. Actuators A Phys., Vol.184, pp.93-97, 2012.   DOI
19 Holzki, M., Fouckhardt, H., Klotzbucher, T., "Evanescent-fieldfiber sensor for the water content in lubricating oils with sensitivity increase by dielectrophoresis", Sens. Actuators A Phys., Vol.184, pp.93-97, 2012.   DOI
20 Smiechowski, M.F., Lvovich, V.F., "Iridium oxide sensors for acidity and basicity detection in industrial lubricants", Sens. Actuators B Chem., Vol.96, pp.261-267, 2003.   DOI
21 Soleimani, M., Sophocleous, M., Glanc, M., Atkinson, J., Wang, L., Wood, R. J. K., et. al., "Engine oil acidity detection using solid state ion selective electrodes", Tribol. Int., Vol.65, pp.48-56, 2013.   DOI
22 Moon, S-I., Paek, K-K., Lee, Y-H., Kim, J-K., Kim, S-W., Ju, B-K., "Multiwall carbon nanotube sensor for monitoring engine oil degradation", Electrochem Solid-State Lett., Vol.9, pp.H78, 2006.   DOI
23 Ippoliti, L., Steimes, J., Hendrick, P., "Investigation on an oil aeration measurement technique for the study of pump performance in an aircraft engine lubrication system", ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Quebec, Canada, August 2015.
24 Kimura, Y., Kato, N., Kataoka, T., Takahashi, K., Kikuchi, T., "Bubble behavior in engine lubricant", Int. J. Automot. Eng., Vol.2, pp.149-153, 2011.   DOI
25 Preethichandra, D. M. G., Shida, K., "Actual condition monitoring of engine oil through an intelligent multi-functional sensing approach", Proceedings of the 26th annual conference of the IEEE industrial electronics society, 2000. IECON: 2000, pp.2383-2387.
26 Industrial Technology, "Online condition monitoring of grease in rolling bearings", http://www.industrial-technology.co.uk/products-online-condition-monitoringof-grease-in-rolling-bearings.html, Accessed December 16, 2020.
27 Aranzabe, A., Aranzabe, E., Marcaide, A., Ferret, R., Terradillos, J., Ameye, J., et. al., "Comparing different analytical techniques to monitor lubricating grease degradation", NLGI Spokesm., Vol.70, pp17-30, 2006.
28 Wu, T., Wu, H., Du, Y., Peng, Z., "Progress and trend of sensor technology for on-line oil monitoring", Sci. China Technol. Sci., Vol.56, pp.2914-2926, 2013.   DOI
29 Duchowski, J. K., Mannebach, H., "A novel approach to predictive maintenance: a portable, multi-component MEMS sensor for on-line monitoring of fluid condition in hydraulic and lubricating systems", Tribol. Trans., Vol.49, pp.545-553, 2006.   DOI
30 Zhu, X., Du, L., Liu, B., Zhe, J., "A microsensor array for quantification of lubricant contaminants using a back propagation artificial neural network", J. Micromech. Microeng., Vol.26, pp.65005, 2016.   DOI
31 He, Y., Zhao, Z., Luo, T., Lu, X., Luo, J., "Failure analysis of journal bearing used in turboset of a power plant", Mater. Des., Vol.52, pp923-931, 2013.   DOI
32 Delta Services Industrials. Lubricant aeration, http://www.deltabeam.net/en/product/lubricant-aeration, Accessed December 16, 2020.
33 Tandon, N., Ramakrishna, K. M., Yadava, G.S., "Condition monitoring of electric motor ball bearings for the detection of grease contaminants", Tribol. Int., Vol.40, pp.29-36, 2007.   DOI
34 Zhao, M., Lin, J., Xu, X., Li, X., "Multi-fault detection of rolling element bearings under harsh working condition using imf-based adaptive envelope order analysis", Sensors, Vol.14, pp.20320-20346, 2014.   DOI
35 Kumar, M., Shankar, Mukherjee, P., Mohan, Misra, N., "Advancement and current status of wear debris analysis for machine condition monitoring: a review", Ind. Lubr. Tribol., Vol.65, pp.3-11, 2013.   DOI
36 Lee, K. S., Kim, J. W., "A study on strategy of condition based maintenance for rolling stock", Proc. Spring Conf. Korean Society for Railway, Mokpo, Korea, May 2015.
37 Yan, R., Gao, R. X., "Complexity as a measure for machine health evaluation", IEEE Trans. Instrum. Meas., Vol.53, pp.1327-1334, 2004.   DOI
38 Garcia, Marquez, F. P., Tobias, A. M., Pinar, Perez, J.M., Papaelias, M., "Condition monitoring of wind turbines: techniques and methods", Renew Energy, Vol.46, pp.169-178, 2012.   DOI
39 Khan, M. A., Starr, A. G., "Wear debris: basic features and machine health diagnostics", Insight NonDestr. Test Cond. Monit., Vol.48, pp. 470-476, 2006.   DOI
40 Hong, S. H., "Literature review of machine condition monitoring with oil sensors-Types of sensors and their functions", Proc. Autumn Conf. Korean Tribol. Soc., Pusan, Korea, October 2019.
41 Younus, A. M. D., Yang, B. S., "Intelligent fault diagnosis of rotating machinery using infrared thermal image", Expert Syst. Appl., Vol.39, pp.2082-2091, 2012.   DOI
42 Hong, S. H., "Literature review of machine condition monitoring with oil sensors-Application cases", Proc. Conf. Korean Tribol. Soc., Daejeon, Korea, September 2020.
43 Cao, W., Dong, G., Chen, W., Wu, J., Xie, Y.B., "Multi sensor information integration for online wear condition monitoring of diesel engines", Tribol. Int., Vol.82, pp.68-77, 2015.   DOI
44 Hong, S. H., Ha, J. M., Seo, M. G., Cho, J. I., Jeon, H. G., Yoo, J. H., "Machine condition monitoring system with ferrous wear debris sensor", Proc. Autumn Conf. Korean Tribol. Soc., Pusan, Korea, October 2019.
45 Flanagan, I. M., Jordan, J. R., Whittington, H. W., "Wear-debris detection and analysis techniques for lubricant-based condition monitoring", J. Phys. E. Sci. Instrum., Vol.21, pp.1011-1016, 1988.   DOI
46 Du, L., Zhu, X., Han, Y., Zhe, J., "High throughput wear debris detection in lubricants using a resonance frequency division multiplexed sensor", Tribol. Lett., Vol.51, pp.453-460, 2013.   DOI
47 Shen, M. X., Dong, F., Zhang, Z. X., Meng, X. K., Peng, X. D., "Effect of abrasive size on friction and wear characteristics of nitrile butadiene rubber (NBR) in two-body abrasion", Tribol. Int., Vol.103, pp.1-11, 2016.   DOI
48 Zhu, X., Zhong, C., Zhe, J., "Lubricating oil condition sensors for online machine health monitoring - A review", Tribol. Int., Vol.109, pp.473-484, 2017.   DOI
49 Murali, S., Xia, X., Jagtiani, A. V., Carletta, J., Zhe, J., "Capacitive Coulter counting: detection of metal wear particles in lubricant using a microfluidic device", Smart Mater. Struct., Vol.18, pp.37001, 2009.   DOI
50 Controls, Gill Sensors & Controls. Oil debris sensor, https://www.gillsc.com/assets/Uploads/GScondition-CD1599-Iss-5.pdf, Accessed December 16, 2020.
51 Wen, Z., Yin, X., Jiang, Z., "Applications of electrostatic sensor for wear debris detecting in the lubricating oil", J. Inst. Eng. Ser. C., Vol.94, pp.281- 286, 2013.   DOI
52 Liu, Y., Liu, Z., Xie, Y., Yao, Z., "Research on an on-line wear condition monitoring system for marine diesel engine", Tribol. Int., Vol.33, pp.829-835, 2000.   DOI
53 Keller, M. A., Saba, C. S., "Monitoring of ester base lubricants by dielectric constant", Lubr. Eng., Vol.45, pp.347-351, 1989.
54 Du, L., Zhe, J., Carletta, J., Veillette, R., Choy, F., "Real-time monitoring of wear debris in lubrication oil using a microfluidic inductive Coulter counting device", Microfluid Nanofluidics, Vol.9, pp.1241-1245, 2010.   DOI
55 Du, L., Zhe, J., Carletta, J. E., Veillette, R. J., "Inductive Coulter counting: detection and differentiation of metal wear particles in lubricant", Smart Mater. Struct., Vol.19, pp.57001, 2010.   DOI
56 Du, L., Zhe, J., "Parallel sensing of metallic wear debris in lubricants using under-sampling data processing", Tribol. Int., Vol.53, pp.28-34, 2012.   DOI
57 Gastops Long Live Equipment. MetalSCAN MS4000, http://www.gastops.com/wp-content/uploads/2016/09/C008850_001.pdf, Accessed December 16, 2020.
58 Du, L., Zhe, J., "A high throughput inductive pulse sensor for online oil debris monitoring", Tribol. Int., Vol.44, pp.175-179, 2011.   DOI