• Title/Summary/Keyword: condenser

Search Result 1,031, Processing Time 0.023 seconds

Analysis of Impact on Voltage Stability by Starting Synchronous Condenser in Jeju AC Network (제주계통에서 동기조상기 기동에 따른 전압안정도 영향 검토)

  • Choi, Soon-Ho;Lee, Seong-Doo;Kim, Chan-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.23-28
    • /
    • 2015
  • Two old synchronous condensers in Jeju are being replaced by new machines to operate Jeju AC network with Haenam-Jeju HVDC system stably. Before new synchronous condensers operate on site, voltage stability analysis is conducted to verify stable operation of jeju AC network. Through impedance analysis of the synchronous machine, transformer and ac network, the equivalent circuit is constructed and the voltage drop during start-up is calculated. Then, PSS/E fault analysis is performed to acquire short-circuit capacity according to the generator operation scenarios. Voltage variation when starting synchronous condenser is simulated in PSCAD/EMTDC and satisfies the operating condition of jeju AC network and HVDC #1 system.

A Study on the Condensation Heat Transfer inside Tube of an Air Cooled Condenser (공냉식 응축기 관내 응축 열전달에 관한 연구)

  • 정형호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.13-19
    • /
    • 2000
  • In the present study, a program for predicting thermal performance of an air cooled condenser is illustrated. Heat transfer equations of single phase and two phase flow are formulated into the form that is convenient to incorporate the local analysis method. The resulting equations are solved by temperature and mass correction methods. Empirical equations for both side fluids are incorporated in the caculation procedures. In order to compare the calculation results, superheat temperature of steam are varied. The tube length of superheated zone, wall temperature, temperature profile along the tube and steam qualities are predicted.

  • PDF

Study on Cooling Charcteristics of Forced Evaporation by using Steam Ejector (스팀 에젝터에 의한 강제 증발 방식의 냉각 특성에 관한 연구)

  • Son, H.J.;Lee, Y.H.;Kim, Y.G.;Jeong, H.M
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.41-46
    • /
    • 2006
  • This study shows a water cooling system by using a steam ejector and jet condenser to drop the temperature of the water by about $5^{\circ}C\;from\;25^{\circ}C$ or higher. In this research, to replace the present water cooling system, we focused on a water cooling system by latent heat of evaporation, thus this system needs a vacuum pressure to evaporate the water in enclosed tank. The water cooling effects are depended on the vacuum pressure in the enclosed tank, and the cooling water is generated by latent head of evaporation. As the experimental results, the absolute vacuum pressure obtained was about $5{\sim}8$ mmHg using a steam driven ejector with jet condenser.

  • PDF

Design Verification of ECS Condenser Icing Protection System by Flight Test of T-50 Advanced Trainer (T-50 비행시험을 통한 환경제어계통 콘덴서 빙결방지 설계 검증)

  • Nam, Yong-Seog;Kim, Yeonhi;Song, Seok-Bong;Seo, Dong-Yun;Son, Won-Ik;Park, Sung-Soon
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.3
    • /
    • pp.40-44
    • /
    • 2008
  • T-50 ECS(environment control system) was designed to have freezing protection for the condenser. However during the ground and flight test, the freezing problem was occurred. This paper deals with the analysis of the freezing problem and introduces anti-freezing design using ADI(Active De-Icing) logic to solve the condenser freezing problem of T-50 ECS

  • PDF

Cold Energy Storage System Using Direct Contact Heat Transfer (직접 접촉식을 이용한 빙축열 시스템)

  • Lee, Y.P.;Yoon, S.Y.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.247-258
    • /
    • 1994
  • In this study, experimental investigations to find cold energy storage performance have been made for two different temperatures at condenser. Temperatures at inlet and outlet of condenser were measured to calculate global heat transfer coefficient of direct contact method in our cold energy storage system. Also storage performance by direct contact method was compared with that of Ice-On-Coil type ice storage which was calculated by analytic solution. Results show that, in the case of $-8.0^{\circ}C$ at condenser inlet, heat transfer coefficient of direct contact method is 3.25 times higher than that of conventional method and COP of system is improved by using R141b as refrigerant which produces gas hydrate and has higher phase change temperature than $0.0^{\circ}C$.

  • PDF

The optimal parameters in series-series counterflow chillers system within air conditioning (공조장치내의 직렬-직렬 대향류 냉각기에서 최적 변수)

  • Phu, Nguyen Minh;Hung, Bui Ngoc;Lee, Geun-Sik
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1332-1336
    • /
    • 2009
  • If water-chillers are arranged in series-series counterflow, compressor lift of each chiller will be decreased in comparison with water-chillers in parallel. That means that compressor power of the chillers in series will be lower than that of chillers in parallel. However, the pressure drop of the water flow through the chillers in series will increase, and thus increase the power of water pumps. This disadvantage will be made good by increasing the temperature difference of water flow through evaporator and condenser, but the water flow rates will decrease. This paper explores the optimal parameters in system of series-series counterflow for central chilled water plants such as the leaving chilled water temperature, the leaving condenser water temperature, condenser water flow rate and number of chillers in series.

  • PDF

A Study on the Improvement of Starting Characteristics for Single Phase Induction Motor (단상유도전동기 기동특성 개선에 관한 연구)

  • Lim, Yang-Su;Back, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.284-286
    • /
    • 1995
  • The most common for starting a single phase induction motor is to install a starting condenser and a centrifugal switch in series with the auxiliary winding. Though this method is simple, life of single phase induction motor is short because of malfunction of a starting condenser and a centrifugal switch and efficiency improvement has limitation. In this paper, the starting characteristics of SPIM is improved by voltage and phase control strategy of auxiliary winding in removing a starting condenser and a centrifugal switch. Finally, the excellent starting performance of SPIM is shown through simulation and experimental results.

  • PDF

A Comparative Study of Heat Pump Drying System Performances (열펌프를 이용한 건조시스템의 성능비교 연구)

  • 김석광;이흥주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1595-1602
    • /
    • 1992
  • An energy efficient drying system, utilizing a heat pump to recover the wasted heat with high efficiency is proposed. In conventional drying systems, over-heating occurs through a condenser as the same amount of air is provided into the evaportator and the condenser. In order to prevent the over-heating, part of the outlet air from the drying chamber must be bypassed to increase the rate of vaporization in the drying chamber without release of the heat from the system. Since a part of the heat in the condenser is used to heat the air during the drying process of the proposed system, a high drying efficiency and low SPC(Specific Power Consumption) could be obtained, Comparing the performances between the proposed heat pump and a conventional one, it was found that the drying efficiency of the proposed heat pump is higher than that of the conventional heat pump by an amount of 7-25%.

Numerical Analysis of Water Hammer in Condenser Cooling Water Systems (콘덴서 냉각수 계통내의 수격현상 에 관한 수치해석)

  • 장효환;정회범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.638-646
    • /
    • 1985
  • Water hammering in nuclear or thermal power plant condenser cooling water systems in mathematically modeled and numerically analyzed based on the method of characteristics. Effects of variations of the discharge valve operating condition and the system geometry on the hydraulic transients are investigated for the cases when all or one of four pumps are tripped accidently due to loss of offisite power. Effects of ocean waves and tides on the steady-state and the transient operations are also studied. Water column separation in taken into account whenever necessary by means of a simplified physical model.

Numerical Analysis of Cathodic Protection Effect by Sacrificial Anode Attached to Condenser of Power Plant (희생양극법에 의한 발전소 복수기의 음극방식효과에 대한 수치해석)

  • Kim, Jang-Sun;Bae, Byeong-Hong;Kim, Ui-Hyeon;Lee, Chung-Geun;Kim, Jong-Yeong
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.842-849
    • /
    • 1995
  • The effect of cathodic protection by the sacrificial anode attached to condenser waterbox of power plant was investigated using numerical analysis. The condenser is consisted of various materials. So in case of no protection, the serious galvanic corrosion between waterbox and tubesheet was observed. If sacrificial anodes were attached to the wall of waterbox or the area corroded galvanically, the large protection effect was showed. To demonstrate the validity of numerical analysis results, model test was executed. The numerical solution was consistent with the experimental vague well.

  • PDF