• Title/Summary/Keyword: condensation reaction

Search Result 412, Processing Time 0.024 seconds

Synthesis and Properties of Novel Flame-Retardant and Thermally Stable Poly(amideimide)s from N,N'-(bicyclo[2,2,2]oct-7-ene-tetracarboxylic)-bis-L-amino Acids and Phosphine Oxide Moiety by Two Different Methods

  • Faghihi, Khalil;Hajibeygi, Mohsen;Shabanian, Meisam
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.739-745
    • /
    • 2009
  • N,N'-(bicyclo[2,2,2]oct-7-ene-tetracarboxylic)-bis-L-amino acids 3a-g were synthesized by the condensation reaction of bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride 1 with two equimolars of Lalanine 2a, L-valine 2b, L-leucine 2c, L-isoleucine 2d, L-phenyl alanine 2e, L-2-aminobutyric acid 2f and L-histidine 2g in an acetic acid solution. Seven new poly(amide-imide)s PAIs 5a-g were synthesized through the direct polycondensation reaction of seven chiral N,N'-(bicyclo[2,2,2]oct-7-ene-tetracarboxylic)-bis-L-amino acids 3a-g with bis(3-amino phenyl) phenyl phosphine oxide 4 by two different methods: direct polycondensation in a medium consisting of N-methyl-2-pyrrolidone (NMP)/triphenyl phosphite (TPP)/calcium chloride ($CaCl_2$/pyridine (py), and direct polycondensation in a tosyl chloride (TsCl)/pyridine (py)/N,N-dimethylformamide (DMF) system. The polymerization reaction produced a series of flame-retardant and thermally stable poly(amide-imide)s 5a-g with high yield. The resulted polymers were fully characterized by FTIR, $^1H$ NMR spectroscopy, elemental analyses, inherent viscosity, specific rotation and solubility tests. Data obtained by thermal analysis (TGA and DTG) revealed that the good thermal stability of these polymers. These polymers can be potentially utilized in flame retardant thermoplastic materials.

Synthesis and Properties of New Phthaloperinone Dyes containing Anthraquinone Moiety (Anthraquinone을 포함하는 신규 Phthaloperinone 색소의 합성과 특성에 대한 연구)

  • Jun, Kun;Gwon, Seon Yeong;Kim, Yu Jin;Kim, Sung Hoon
    • Textile Coloration and Finishing
    • /
    • v.28 no.2
    • /
    • pp.57-62
    • /
    • 2016
  • We have synthesized five novel phthaloperinone dyes via a condensation reaction to be applied as yellow colorants for liquid crystal display(LCD) color filters. The reaction between 1,8-naphthalic anhydride(1a), 4-chloro-1,8-naphthalic anhydride(1b), 4-bromo-1,8-naphthalic anhydride(1c), 3-nitro-1,8-naphthalic anhydride(1d), 4-nitro-1,8-naphthalic anhydride(1e) and 1,2-diaminoanthraquinone(2) proceeded readily giving a product in 72-88% yields. The synthesized dyes were characterized by UV-Vis, mass spectrometry and elemental analysis. The spectral properties and thermal stability of the dyes were examined. The dyes absorb at around 400-450nm. All five dyes showed satisfactory thermal stability: the dyes retain 99-100% of its original weight at $300^{\circ}C$, 98-100% at $350^{\circ}C$, 92-98% at $400^{\circ}C$, and 84-92% at $450^{\circ}C$. We have quantitatively evaluated the reaction mechanism and reactivity of dye molecules by means of Pariser-Parr-Pople Molecular Orbital Method(PPP-MO).

Synthesis and Antibacterial Activity of New Tetrazole Derivatives (새로운 Tetrazole유도체의 합성과 항균활성)

  • Mulwad, V.V.;Pawar, Rupesh B;Chaskar, Atul C
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.3
    • /
    • pp.249-256
    • /
    • 2008
  • 3-Acetyl/Formyl 4-hydroxy-2H(1)-benzopyran-2-one on treatment with malonitrile and ethyl cyanoacetate yielded 1,1-dicyano-2-[4/-hydroxy-2/H(1)-benzopyran-2/-one-3/-yl] ethene/propene 2a-h and ethyl-2-cyano-3-[4/-hydroxy-2/H (1)-benzopyran-2/-one-3/-yl] propenoate/butenoate 3a-h respectively. The 1,3 dipolar reaction of 2a-h with NaN3 gave the tetrazole derivative 4a-h. 3a-h on cyclization with PPA gave 3-cyano-2H,5H-pyrano [3, 2-c] benzopyran-2,5-diones 5a-h which on 1,3 dipolar reaction with NaN3 to gave 3-(1/H-tetrazol-5/-yl)-2H,5H-pyrano[3, 2-c] benzopyran-2,5-diones 6a-h. The structures of the compounds have been established on the basis of the spectral and analytical data. All the compounds were screened for their antimicrobial activities and have been found to exhibited significant antibacterial activities. Compounds 2h and 4h showed the activity 50g/mL.

Control of Molecular Weight, Stereochemistry and Higher Order Structure of Siloxane-containing Polymers and Their Functional Design

  • Yusuke Kawakami;Yuning Li;Yang Liu;Makoto Seino;Chitsakon Pakjamsai;Motoi Oishi;Cho, Yeong-Bee;Ichiro Imae
    • Macromolecular Research
    • /
    • v.12 no.2
    • /
    • pp.156-171
    • /
    • 2004
  • We describe the precision synthesis schemes of siloxane-containing polymers, i.e., the control of their molecular weight, stereoregularity, and higher-order structures. First, we found a new catalytic dehydrocoupling reaction of water with bis(dimethylsilyl)benzene to give poly(phenylene-disiloxane). Together with this reaction, we applied hetero-condensations to the synthesis of thermally stable poly(arylene-siloxane)s. The dehydrocoupling reaction was applied to the synthesis of syndiotactic poly(methylphenylsiloxane) and poly(silsesquioxane)s, which we also prepared by hydrolysis and deaminative condensation reactions. We discuss the tendency for loop formation to occur in the synthesis of poly(silsesquioxane) by hydrolysis, and provide comments on the design of functionality of the polymers produced. By taking advantage of the low energy barrier to rotation in the silicon-oxygen bond, we designed selective oxygen-permeable membrane materials and liquid crystalline materials. The low surface free energy of siloxane-containing systems allows surface modification of a blend film and the design of holographic grating materials.

Synthesis and Cured Film Properties of UV-Curable Caprolactone-Modified Urethane Acrylate Oligomers (광경화용 카프로락톤 변성 우레탄 아크릴레이트 올리고머 합성과 경화필름 물성에 관한 연구)

  • Kim, Jeong-Yeol;Moon, Byoung-Joon;Kang, Doo-Whan;Hwang, Seok-Ho
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.574-578
    • /
    • 2010
  • In this study, the caprolactone modified hydroxy acrylates (CHAs) were synthesized by ring-opening reaction of caprolactone and 2-hydroxyethyl acrylate (2-HEA) as initiator. Also, the caprolactone modified urethane acrylate (UA) oligomers were synthesized by condensation reaction of previously synthesized CHAs, 2-hydroxyethyl acrylate (2-HEA) and hexamethylene diisocyanate trimer (HDT). Using the hydroxy number of CHAs, the molecular weights of the CHAs were calculated easily and their molecular weight was similar to the theoretical molecular weight of them. The viscosity of UA oligomers decreased as increasing a content of CHA in the UA oligomer. Cure films were prepared from UA oligomer, reactive diluents, and UV initiator to investigate their physical properties. The thermal stability and color difference on high temperature for the cured film were improved as increasing the crosslinking density. Their surface hardness was also increased as increasing crosslinking density of the cured films, but their elongation at break was decreased.

Preparation and Thermal Properties of Aliphatic Network Polyester-Silica Composites (지방족 가교 폴리에스테르-실리카 복합재료의 제조 및 열적특성)

  • Oh, Chang-Jin;Park, Su-Dong;Han, Dong-Cheul;Kwak, Gi-Seop
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.424-429
    • /
    • 2010
  • The hybrid composites of aliphatic polyester-silica were prepared via a sol-gel reaction and their potential application using as a buffer coating layer in the thermoelectric device were investigated. When aliphatic polyesters were thermally treated at a high temperature of $240^{\circ}C$, the polymer showed an increases in thermal degradation temperature by $30{\sim}90^{\circ}C$ according to the thermal treatment time. The polyester-silica composites showed an increases in thermal degradation temperature by $30{\sim}50^{\circ}C$ according to the content of the added silica. Polyester-silica composite showed neither discoloration nor change in optical properties because Knoevenagel condensation reaction was hindered by silica structure. The thermal conductivity of the composites increased linearly according to the content of added silica.

Effects of pressure during the synthesis of petroleum pitch precursors in open and closed systems

  • Choi, Jong-Eun;Ko, Seunghyun;Kim, Jong Gu;Jeon, Young-Pyo
    • Carbon letters
    • /
    • v.25
    • /
    • pp.95-102
    • /
    • 2018
  • We examined the pressure effects on petroleum pitch synthesis by using open and closed reaction systems. The pressure effects that occur during the pitch synthesis were investigated in three pressure systems: a closed system of high pressure and two open systems under either an atmosphere or vacuum. A thermal reaction in the closed system led to the high product yield of a pitch by suppressing the release of light components in pyrolysis fuel oil. Atmospheric treatment mainly enhanced the polymerization degree of the pitch via condensation and a polymerization reaction. Vacuum treatment results in a softening point increase due to the removal of components with low molecular weights. To utilize such characteristic effects of system pressure during pitch preparations, we proposed a method for synthesizing cost-competitive pitch precursors for carbon materials. The first step is to increase product yield by using a closed system; the second step is to increase the degree of polymerization toward the desired molecular distribution, followed by the use of vacuum treatment to adjust softening points. Thus, we obtained an experimental quinoline insolubles-free pitch of product yield over 45% with softening points of approximately $130^{\circ}C$. The proposed method shows the possibility to prepare cost-competitive pitch precursors for carbon materials by enhancing product yield and other properties.

Reaction Characteristics of Five Kinds of Oxygen Carrier Particles for Chemical-Looping Combustor (매체순환식 가스연소기 적용을 위한 5가지 산소공여입자들의 반응특성)

  • Ryu, Ho-Jung;Kim, Gyoung-Tae;Lim, Nam-Yun;Bae, Seong-Youl
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.1
    • /
    • pp.24-34
    • /
    • 2003
  • For gaseous fuel combustion with inherent $CO_2$ capture and low NOx emission, chemical-looping combustion may yield great advantages for the savings of energy to $CO_2$ separation and suppressing the effect on environment, In chemical-looping combustor, fuel is oxidized by metal oxide medium in a reduction reactor. Reduced particles are transported to oxidation reactor and oxidized by air and recycled to reduction reactor. The fuel and the air are never mixed, and the gases from reduction reactor, $CO_2$ and $H_2O$, leave the system as separate stream. The $H_2O$ can be easily separated by condensation and pure $CO_2$ is obtained without any loss of energy for separation. In this study, five oxygen carrier particles such as NiO/bentonite, NiO/YSZ, $(NiO+Fe_2O_3)VYSZ$, $NiO/NiAl_2O_4$, and $Co_{\chi}O_y/CoAl_2O_4$ were examined &om the viewpoints of reaction kinetics, oxygen transfer capacity, and carbon deposition characteristics. Among five oxygen particles, NiO/YSZ particle is superior in reaction rate, oxygen carrier capacity, and carbon deposition to other particles. However, at high temperature ($>900^{\circ}C$), NiO/bentonite particle also shows enough reactivity and oxygen carrier capacity to be applied in a practical system.

Characterization and Formation of Chemical Bonds of Silica-Coupling Agent-Rubber (실리카-커플링제-고무의 화학 결합 형성과 특성 분석)

  • Ko, Eunah;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.239-244
    • /
    • 2014
  • Reaction between silica and silane coupling agent without solvent was investigated using transmission mode Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Bis[3-(triethoxysilylpropyl) tetrasulfide] (TESPT) was used as a silane coupling agent. After removing the unreacted TESPT, formation of chemical bonds was analyzed using FTIR and content of reacted TESPT was determined using TGA. Content of the coupling agent bonded to silica increased with increase in the coupling agent content, but the oligomers were formed by condensation reaction between coupling agents when the coupling agent was used to excess. In order to identify bonds formed among silica, coupling agent, and rubber, a silica-coupling agent-BR model composite was prepared by reaction of the modified silica with liquid BR of low molecular weight and chemical bond formation of silica-coupling agent-BR was investigated. Unreacted rubber was removed with solvent and analysis was performed using FTIR and TGA. BR was reacted with the coupling agent of the modified silica to form chemical bonds. Polarity of silica surface was strikingly reduced and particle size of silica was increased by chemical bond formation of silica-coupling agent-BR.

Clean and Efficient Synthesis of Furfural From Xylose by Microwave-Assisted Biphasic System using Bio-Based Heterogeneous Acid Catalysts

  • Vo, Anh Thi Hoang;Lee, Hong-shik;Kim, Sangyong;Cho, Jin Ku
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.250-257
    • /
    • 2016
  • As an attempt to replacing petroleum-based chemicals with bio-based ones, synthesis of furfural from biomass-derived xylose attracts much attention in recent days. Conventionally, furfural from xylose has been produced via the utilization of highly corrosive, toxic, and environmentally unfriendly mineral acids such as sulfuric acid or hydrochloric acid. In this study, microwave-assisted biphasic reaction process in the presence of novel bio-based heterogeneous acid catalysts was developed for the eco-benign and effective synthesis of furfural from xylose. The microwave was irradiated for reaction acceleration and a biphasic system consisting of $H_2O$ : MIBK (1 : 2) was designed for continuous extraction of furfural into the organic phase in order to reduce the undesired side products formed by decomposition/condensation/oligomerization in the acidic aqueous phase. Moreover, sulfonated amorphous carbonaceous materials were prepared from wood powder, the most abundant lignocellulosic biomass. The prepared catalysts were characterized by FT-IR, XPS, BET, elemental analysis and they were used as bio-based heterogeneous acid catalysts for the dehydration of xylose into furfural more effectively. For further optimization, the effect of temperature, reaction time, water/organic solvent ratio, and substrate/catalyst ratio on the xylose conversion and furfural yield were investigated and 100% conversion of xylose and 74% yield of furfural was achieved within 5 h at $180^{\circ}C$. The bio-based heterogeneous acid catalysts could be used three times without any significant loss of activity. This greener protocol provides highly selective conversion of xylose to furfural as well as facile isolation of product and bio-based heterogeneous acid catalysts can alternate the environmentally-burdened mineral acids.