Browse > Article

Preparation and Thermal Properties of Aliphatic Network Polyester-Silica Composites  

Oh, Chang-Jin (Department of Polymer Science, Kyungpook National University)
Park, Su-Dong (Korea Electrotechnology Research Institute)
Han, Dong-Cheul (Department of Polymer Science, Kyungpook National University)
Kwak, Gi-Seop (Department of Polymer Science, Kyungpook National University)
Publication Information
Polymer(Korea) / v.34, no.5, 2010 , pp. 424-429 More about this Journal
Abstract
The hybrid composites of aliphatic polyester-silica were prepared via a sol-gel reaction and their potential application using as a buffer coating layer in the thermoelectric device were investigated. When aliphatic polyesters were thermally treated at a high temperature of $240^{\circ}C$, the polymer showed an increases in thermal degradation temperature by $30{\sim}90^{\circ}C$ according to the thermal treatment time. The polyester-silica composites showed an increases in thermal degradation temperature by $30{\sim}50^{\circ}C$ according to the content of the added silica. Polyester-silica composite showed neither discoloration nor change in optical properties because Knoevenagel condensation reaction was hindered by silica structure. The thermal conductivity of the composites increased linearly according to the content of added silica.
Keywords
aliphatic polyester; silica; sol-gel reaction; hybrid composite; thermoelectric device;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Y. Ikada and H. Tsugi, Macromol. Rapid Commun., 21, 117 (2000).   DOI   ScienceOn
2 P. Dashora and G. Gupta, Polymer, 37, 231 (1996).   DOI   ScienceOn
3 E. M. Arnett, S. Maroldo, S. L. Schilling, and J. A. Harrelson, J. Am. Chem. Soc., 106, 6759 (1984).   DOI
4 G. Jones, Organic Reactions(New York), 15, 204 (1967).
5 L. F. Tietze and U. Beifuss, in Comprehensive Organic Synthesis, B. M. Trost and I. Fleming, Editors, Pergamon Press, New York, Vol. 2, p 341 (1991).
6 T. Laue and A. Plagens, Named Organic Reactions, 2nd ed., John Wiley & Sons Publishers, England, p 176 (2005).
7 Y. Xu, D. D. L. Chung, and M. Cathleen, Compos. Part A, 32, 1749 (2001).   DOI   ScienceOn
8 T. M. Tritt and M. A. Subramanian, MRS Bulletin, 31, 188 (2006).   DOI
9 T.-G. Kang and Y.-K. Han, Polymer(Korea), 29, 314 (2005).   과학기술학회마을
10 S. H. Lee, Y. K. Han, Y. H. Kim, and S. H. Kim, J. Polym. Sci. Part A : Polym. Chem., 40, 567 (1998).
11 J. Kim, H. J. Choi, D. C. Lee, J. S. Yoon, I.-J. Chin, and K. H. Lee, Polymer(Korea), 24, 358 (2000).
12 D.-K. Kim, Y.-S. Shin, S.-S. Im, Y.-T. Yoo, and J.-R. Huh, Polymer(Korea), 20, 431 (1996).
13 T. J. Seebeck, "Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz", Abhandlungen der Preussischen Akad, der Wissenshaften zu Berlin, p.265 (1822).
14 G. Kwak and M. Fujick, Macromolecules, 37, 2021 (2004).   DOI   ScienceOn
15 G. Kwak, A. Takagi, and M. Fujiki, Macromolecules, 38, 69 (2005).   DOI   ScienceOn
16 S. Jeong, G. Kwak, I. T. Jung, D.-H. Lee, H.-J. Roh, and K.-B. Yoon, Polymer(Korea), 32, 56 (2009).
17 G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer Series in Materials Science, Springer-Verlag Berlin, Germany, p 1 (2001).
18 A. F. Loffe, Semiconductor Thermoelements and Thermoelectric Cooling, Inforsearch Ltd, London, 1957.
19 K.-B. Yoon, S. Jeong, and G. Kwak, Macromol. Rapid Commun., 28, 1231 (2007).   DOI   ScienceOn
20 C. Saujanya and S. Radhakrishnan, Polymer, 42, 6723 (2001).   DOI   ScienceOn
21 Y. T. Lee, Polym. Sci. Tech., 4, 444 (1993).
22 Z. Hua, W. Shisahan, and S. Jian, Chem. Rev., 108, 3893 (2008).   DOI   ScienceOn
23 S. Sakka and K. Kamiya, J. Non-Cryst. Solids, 42, 403 (1980).   DOI   ScienceOn
24 H. Tsuji, Y. Echizen, and Y. Nishimura, Polym. Degrad. Stabil., 91, 1128 (2006).   DOI   ScienceOn