Control of Molecular Weight, Stereochemistry and Higher Order Structure of Siloxane-containing Polymers and Their Functional Design

  • Yusuke Kawakami (Graduate School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST)) ;
  • Yuning Li (Graduate School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST) ;
  • Yang Liu (Graduate School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST) ;
  • Makoto Seino (Graduate School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST) ;
  • Chitsakon Pakjamsai (Graduate School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST) ;
  • Motoi Oishi (Graduate School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST) ;
  • Cho, Yeong-Bee (Graduate School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST) ;
  • Ichiro Imae (Graduate School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST))
  • Published : 2004.04.01

Abstract

We describe the precision synthesis schemes of siloxane-containing polymers, i.e., the control of their molecular weight, stereoregularity, and higher-order structures. First, we found a new catalytic dehydrocoupling reaction of water with bis(dimethylsilyl)benzene to give poly(phenylene-disiloxane). Together with this reaction, we applied hetero-condensations to the synthesis of thermally stable poly(arylene-siloxane)s. The dehydrocoupling reaction was applied to the synthesis of syndiotactic poly(methylphenylsiloxane) and poly(silsesquioxane)s, which we also prepared by hydrolysis and deaminative condensation reactions. We discuss the tendency for loop formation to occur in the synthesis of poly(silsesquioxane) by hydrolysis, and provide comments on the design of functionality of the polymers produced. By taking advantage of the low energy barrier to rotation in the silicon-oxygen bond, we designed selective oxygen-permeable membrane materials and liquid crystalline materials. The low surface free energy of siloxane-containing systems allows surface modification of a blend film and the design of holographic grating materials.

Keywords

References

  1. Protective Group in Organic Synthesis(3rd ed) T.W.Greene;P.G.Wuts
  2. Silicon in Polymer Synthesis H.R.Kricheldorf(ed.)
  3. Silicon-Containing Polymers - The Science and Technology of Their Synthesis and Applications- R.G.Jones(ed.);W.Ando(ed.);J.Chojnowski(ed.)
  4. The Analytical Chemistry of Silicones A.L.Smith
  5. Chem. Lett. v.4 S.Yajima;J.Hayashi;M.Omori
  6. Chem. Lett. v.4 S.Yajima;K.Okamura;J.Hayashi
  7. Chem. Rev. v.89 R.D.Miller;J.Michl
  8. High Temperature Siloxane Elastomers P.R.Dvornic;R.W.Lenz
  9. J. Polym. Sci. v.2 R.L.Merker;M.J.Scott
  10. J. Polym. Sci. v.2 R.L.Merker;M.J.Scott;G.G.Haberland https://doi.org/10.1002/pol.1964.110020108
  11. Macromolecules v.32 Y.Li;Y.Kawakami https://doi.org/10.1021/ma9819743
  12. Macromolecules v.32 Y.Li;Y.Kawakami https://doi.org/10.1021/ma990511+
  13. Macromolecules v.32 Y.Li;Y.Kawakami https://doi.org/10.1021/ma991312t
  14. Macromolecules v.33 Y.Li;M.Seino;Y.Kawakami https://doi.org/10.1021/ma992143f
  15. Sci. Tech. Adv. Mater. v.4 Y.Liu;I.Imae;Y.Kawakarri https://doi.org/10.1016/S1468-6996(03)00021-4
  16. Organometallics v.5 Y.D.Blum;R.M.Laine https://doi.org/10.1021/om00141a026
  17. J. Mater. Sci. v.24 Y.D.Blum;K.B.Schwartz;R.M.Laine https://doi.org/10.1007/BF01105695
  18. Organometallics v.13 J.L.He;H.Q.Liu;J.F.Harrod;R.Hynes https://doi.org/10.1021/om00013a049
  19. Polym. Int. v.50 T.Kawakita;H.S.Oh;J.Y.Moon;Y.Liu;I.Imae;Y.Kawakami https://doi.org/10.1002/pi.784
  20. Macromolecules v.33 R.Zhang;J.E.Mark;A.R.Rinhas https://doi.org/10.1021/ma000054t
  21. Silicon Chemistry v.1 J.Y.Moon;T.Miura;I.Imae;D.W.Park;Y.Kawakami https://doi.org/10.1023/A:1020622100471
  22. Sci. Tehc. Adv. Mater. v.4 Y.Liu;I.Imae;A.Makishima;Y.Kawakami https://doi.org/10.1016/S1468-6996(03)00021-4
  23. Polym. Int. Y.Liu;I.Imae;Y.Kawakami
  24. Polym. J. v.35 M.Seino;I.Imae;Y.Kawakami https://doi.org/10.1295/polymj.35.197
  25. Chem. Rev. v.95 R.H.Baney;M.Itoh;A.Sakakibara;T.Suzuki https://doi.org/10.1021/cr00037a012
  26. Chem. Rev. v.95 D.A.Loy;K.J.Shea https://doi.org/10.1021/cr00037a013
  27. J. Organomet. Chem. v.54 G.Engelhardt;M.Maegi;E.Lippmaa https://doi.org/10.1016/S0022-328X(00)84998-0
  28. Chin. J. Polym. Sci. v.14 L.Guizhi;S.Lianghe;Y.Meiling
  29. J. Am. Chem. Soc. v.114 K.J.Shea;D.A.Loy;O.Webster https://doi.org/10.1021/ja00043a014
  30. Reaction condition: 0.25 mmol of phenylsilane, 0.375 mmol of water, and 1μmol of Pd₂(dba)₃ in 50 μL of THF.
  31. Macromolecules v.34 R.O.R.Costa;W.L.Vasconcelos;R.Tamaki;R.M.Laine https://doi.org/10.1021/ma010814f
  32. J. Am. Chem. Soc. v.82 J.F.Brown,Jr.;L.H.Vogt,Jr.;A.Katchman;J.W.Eustance;K.M.Kiser https://doi.org/10.1021/ja01508a054
  33. J. Am. Chem. Soc. v.77 A.J.Barry;W.H.Daudt;J.J.Domicone;J.W.Gilkey https://doi.org/10.1021/ja01621a025
  34. Macromolecules v.4 L.Matejka;O.Dukh;D.Hlavata;B.Meissner;J.Brus
  35. J. Am. Chem. Soc. v.86 J.F.Brown,Jr.;L.H.Vogt,Jr.;P.I.Prescott https://doi.org/10.1021/ja01060a033
  36. J. Am. Chem. Soc. v.87 J.F.Brown,Jr. https://doi.org/10.1021/ja00947a017
  37. Polymer v.41 W.E.Wallance;C.M.Guttman;J.M.Antonucci https://doi.org/10.1016/S0032-3861(99)00386-9
  38. Polym. J. C.Pakjamsai;Y.Kawakami
  39. Silicone Handbook 9in Japanese) K.Itoh(ed.)
  40. Macromolecules v.31 Y.Ito;T.Miyake;T.Ohara;M.Suginome https://doi.org/10.1021/ma9717855
  41. Polym. J. v.30 T.Nakao;Y.Satoh;Y.Okamoto https://doi.org/10.1295/polymj.30.635
  42. Macromolecules v.31 P.C.Innis;I.D.Norris;L.A.P.Kane-Magurie;G.G.Wallace https://doi.org/10.1021/ma9716239
  43. Polym. J. v.31 H.Tang;M.Baba;I.Imae;Y.Kawakami https://doi.org/10.1295/polymj.31.313
  44. Poly. Prepr. v.40 D.Y.Sogah;S.Zheng
  45. Macromolecules v.31 Y.Kawakami;K.Takeyama;K.Komuro;O.Ooi https://doi.org/10.1021/ma9713062
  46. Polym. J. v.31 Y.Kawakami;T.Takahashi;Y.Yada;I.Imae
  47. Macromolecules v.31 Y.Li;Y.Kawakami https://doi.org/10.1021/ma980463d
  48. Macromolecules v.32 Y.Li;Y.Kawakami https://doi.org/10.1021/ma981300s
  49. Makromol. Chem. v.179 H.Finkelman;H.Ringsdof;J.H.Wendorf https://doi.org/10.1002/macp.1978.021790129
  50. Makromol. Chem. v.179 H.Finkelman;M.Happ;M.Portugal;H.Ringsdof https://doi.org/10.1002/macp.1978.021791018
  51. Makromol. Chem. Rapid Commum. v.1 H.Finkelman;G.Rehage https://doi.org/10.1002/marc.1980.030010107
  52. Macromol. Chem. Rapid Commun. v.16 K.Soga;T.Arai;H.T.Ban;T.Uozumi https://doi.org/10.1002/marc.1995.030161205
  53. Macromol. Chem. Phys. v.192 T.Arai;H.T.Ban;T.Uozumi;K.Soga
  54. J. Polym. Sci., Part A: Polym. Chem. v.36 T.Arai;H.T.Ban;T.Uozumi;K.Soga https://doi.org/10.1002/(SICI)1099-0518(199802)36:3<421::AID-POLA6>3.0.CO;2-U
  55. J. Chem. Soc. Chem. Commun. S.S.Abed-Ali;B.J.Brisdon;R.England
  56. J. Inorg. Organoment. Polym. v.1 S.K.Duplock;J.G.Matison;A.G.Swincer;R.F.O.Warren https://doi.org/10.1007/BF00702499
  57. Makromol. Chem. v.194 S.Getz;H.A.Schneider https://doi.org/10.1002/macp.1993.021940119
  58. Macromolecules v.26 G.B.Zhou;J.M.Khan;M.Ishrant;J.Smid https://doi.org/10.1021/ma00061a010
  59. Org. Lett. v.1 M.Oishi;Y.Kawakami https://doi.org/10.1021/ol990068n
  60. Polym. Int. v.50 M.Oishi;J.Y.Moon;W.Janvikul;Y.Kawakami https://doi.org/10.1002/1097-0126(200101)50:1<135::AID-PI600>3.0.CO;2-6
  61. Macromolecules v.33 M.Oishi;Y.Kawakami https://doi.org/10.1021/ma991510k
  62. Polym. J. v.34 M.Seino;M.Oishi;I.Imae;Y.Kawakami https://doi.org/10.1295/polymj.34.43
  63. Membranes in Separation Process S.T.H.Kammermeyer
  64. Membrane Separation Processes S.A.Stern;P.Meares(ed.)
  65. Trans. Farad. Soc. v.35 R.M.Barrer
  66. Macromolecules v.26 Y.Kawakami;Y.Ito;K.Toida https://doi.org/10.1021/ma00057a043
  67. Macromolecules v.28 Y.Kawakami;K.Toida https://doi.org/10.1021/ma00108a003
  68. Polym. J. v.28 Y.Kawakami;M.Ichitani;H.Kunisada;Y.Yuki https://doi.org/10.1295/polymj.28.513
  69. J. Appl. Polym. Sci. v.27 G.O.Schulz;R.Milkovich https://doi.org/10.1002/app.1982.070271222
  70. Polym. J. v.14 Y.Kawakami;Y.Miki;T.Tsuda;R.A.N.Murthy;Y.Yamashita https://doi.org/10.1295/polymj.14.913
  71. Polym. J. v.29 Y.Kawakami;K.Ajima;M.Nomura;T.Hishida;A.Mori https://doi.org/10.1295/polymj.29.95
  72. Macromolecules v.22 Y.Tsukahara;K.Tsutsumi;Y.Yamashita;S.Shimada https://doi.org/10.1021/ma00196a063
  73. Macromolecules v.23 Y.Tsukahara;K.Tsutsumi;Y.Yamashita;S.Shimada https://doi.org/10.1021/ma00227a006
  74. Polym. Bull. v.10 Y.Kawakami;R.A.N.Murthy;Y.Yamashita https://doi.org/10.1007/BF00281950
  75. Makromol. Chem. v.185 Y.Kawakami;R.A.N.Murthy;Y.Yamashita https://doi.org/10.1002/macp.1984.021850102
  76. Macromolecules v.18 Y.Kawakami;T.Aoki;Y.Yamashita https://doi.org/10.1021/ma00145a045
  77. Sci. Tech. Adv. Mater. Y.H.Cho;M.He;B.K.Kim;Y.Kawakami
  78. Appl. Spectr. v.54 R.T.Pogue;R.L.Sutherland;M.G.Schmitt;L.V.Natarajan;S.A.Siwecki;V.P.Tondiglia;T.J.Bunning https://doi.org/10.1366/0003702001948097
  79. Curr. Appl. Phys. v.2 M.S.Park;Y.H.Cho;B.K.Kim;J.S.Jang https://doi.org/10.1016/S1567-1739(02)00101-3
  80. Polym. Adv. Technol. v.10 Y.Ohe;M.Kume;Y.Demachi;T.Taguchi;K.Ichimura https://doi.org/10.1002/(SICI)1099-1581(199909)10:9<544::AID-PAT907>3.0.CO;2-7
  81. Bell. Syst. Tech. J. v.48 K.Kogelnik https://doi.org/10.1002/j.1538-7305.1969.tb01198.x
  82. J. Appl. Polym. Sci. v.77 Y.Ohe;H.Ito;N.Watanabe;K.Ichimura https://doi.org/10.1002/1097-4628(20000906)77:10<2189::AID-APP12>3.0.CO;2-U
  83. Chem. Mater. v.5 R.L.Sutherland;L.V.Natarajan;V.P.Tondiglia;T.J.Bunning https://doi.org/10.1021/cm00034a025
  84. J. Polym. Sci., Part A: Polym. Chem. v.28 J.V.Crivello;J.L.Lee https://doi.org/10.1002/pola.1990.080280303