• 제목/요약/키워드: concrete-filled steel pier

검색결과 20건 처리시간 0.022초

보조보강재가 있는 콘크리트 충전 강교각의 내진성능 평가 (Seismic Evaluation of concrete-Filled Steel Piers with Secondary Reinforcement)

  • 박병기
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.349-356
    • /
    • 2000
  • Strenght and ductility are major factors in the aseismic design of a bridge pier. In spite of good performance in both steel piers have not been used widely due to high cost. But with the filled-in concrete the steel pier have advantages compare to the steel pier only such as improved strength ductility fast construction small section and reasonable cost. In this paper concrete-filled steel piers are tested using quasi-static cyclic lateral load with constant axial load to evaluate the performance. The secondary reinforcement devices such as bolts corner plate and turn buckle are used inside of the piers to improve the ductility with minimum additional cost. Test results shows filled-in concrete and secondary reinforcement devices increase the strength and the ductility of the steel pier.

  • PDF

강합성교각의 내진성능평가 Part I : 준정적 반복재하실험 (Seismic Performance of Concrete-Filled Steel Piers Part I : Quasi-Static Cyclic Loading Test)

  • 조창빈;서진환;장승필
    • 한국지진공학회논문집
    • /
    • 제6권2호
    • /
    • pp.9-19
    • /
    • 2002
  • 강합성교각과 강교각은 철근곤크리트교각에 비해서 우수한 연성, 작은 단면 및 빠른 시공속도에도 불구하고 이 같은 장점들을 활용할 필요가 있는 도시지역에서조차 철근콘크리트교각의 대안으로서 활용되지 못하였다. 이 논문은 강합성교각과 강교각의 내진성능 평가에 관한 연속된 두편의 논문 중 첫편으로 강교각과 강합성 교각의 연성과 강성을 평가 비교하기 위해 수행한 준정적 반복재하실험을 대상으로 하였다. 기존의 강교각 및 강합성교각의 실험과 더불어 채움콘크리트와 하부 다이어프램간의 부작을 개선한 상세를 실험하였다. 또한, 강합성교각의 연성과 강성을 산정하기 위한 간편한 수치해석방법을 찾기 위해 비선형 스프링과 쉘요소를 사용한 해석을 시도하였다. 도시내의 전형적인 오버패스구간의 교각을 모델로 한 실험결과, 강합성교각은 강교각에 비해서 우수한 강성과 에너지 소산능력을 가지고 있는 것으로 나타났으며 채움콘크리트의 부착과 응력집중부의 상세를 개선시기는 것이 강합성교각의 연성과 강성을 증가시키는데 효과적인 것으로 나타났다. 시도된 수지해석방법은 강합성교각과 강교각의 거동을 완벽하게 모사하지는 못했지만 추가적인 연구가 진행되면 연성과 강성을 평가하는 간편한 방법으로 사용될 수 있는 것으로 판단된다.

Bearing capacity of an eccentric tubular concrete-filled steel bridge pier

  • Sui, Weining;Cheng, Haobo;Wang, Zhanfei
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.285-295
    • /
    • 2018
  • In this paper, the bearing capacity of a non-eccentric and eccentric tubular, concrete-filled, steel bridge pier was studied through the finite element method. Firstly, to verify the validity of the numerical analysis, the finite element analysis of four steel tube columns with concrete in-fill was carried out under eccentric loading and horizontal cyclic loading. The analytical results were compared with experimental data. Secondly, the effects of the eccentricity of the vertical loading on the seismic performance of these eccentrically loaded steel tubular bridge piers were considered. According to the simulated results, with increasing eccentricity ratio, the bearing capacity on the eccentric side of a steel tubular bridge pier (with concrete in-fill) is greatly reduced, while the capacity on the opposite side is improved. Moreover, an empirical formula was proposed to describe the bearing capacity of such bridge piers under non-eccentric and eccentric load. This will provide theoretical evidence for the seismic design of the eccentrically loaded steel tubular bridge piers with concrete in-fill.

강합성교각의 내진성능평가 Part II: 유사동적실험 및 잔류내진성능 평가 (Seismic Performance of Concrete-Filled Steel Piers Part II: Pseudo-Dynamic Test and Residual Seismic Capacity)

  • 조창빈;서진환;장승필
    • 한국지진공학회논문집
    • /
    • 제6권2호
    • /
    • pp.21-28
    • /
    • 2002
  • Ductile behavior and strength of concrete-filled steel(CFS) piers was supported by many quasi-static cyclic loading tests. This test method, however, only estimates the member′s deformation capacity under escalating and repetitive displacement and ignores dynamic and random aspects of an earthquake load. Therefore, to understand complete seismic behavior of the structure against an earthquake, dynamic tests such as shaking table test and pseudo-dynamic tests are required as well as quasi-static tests. In this paper, following "Seismic Performance of Concrete-Filled Steel Piers Part I : Quasi-Static Cyclic Loadint Test", the seismic behavior of CFS and steel piers designed for I-Soo overpass in Seoul in investigated by the pseudo-dynamic test. In addition, the residual strength of both piers after an earthquake is estimated by the quasi-static test. The results show that both piers have satisfactory ductility and strength against well-known EI Centro earthquake although the CFS pier has better strength and energy dissipation than the steel pier.

Seismic responses of composite bridge piers with CFT columns embedded inside

  • Qiu, Wenliang;Jiang, Meng;Pan, Shengshan;Zhang, Zhe
    • Steel and Composite Structures
    • /
    • 제15권3호
    • /
    • pp.343-355
    • /
    • 2013
  • Shear failure and core concrete crushing at plastic hinge region are the two main failure modes of bridge piers, which can make repair impossible and cause the collapse of bridge. To avoid the two types of failure of pier, a composite pier was proposed, which was formed by embedding high strength concrete filled steel tubular (CFT) column in reinforced concrete (RC) pier. Through cyclic loading tests, the seismic performances of the composite pier were studied. The experimental results show that the CFT column embedded in composite pier can increase the flexural strength, displacement ductility and energy dissipation capacity, and decrease the residual displacement after undergoing large deformation. The analytical analysis is performed to simulate the hysteretic behavior of the composite pier subjected to cyclic loading, and the numerical results agree well with the experimental results. Using the analytical model and time-history analysis method, seismic responses of a continuous girder bridge using composite piers is investigated, and the results show that the bridge using composite piers can resist much stronger earthquake than the bridge using RC piers.

Seismic behavior of thin-walled CFST pier-to-base connections with tube confined RC encasement

  • Xuanding Wang;Yue Liao;Jiepeng Liu;Ligui Yang;Xuhong Zhou
    • Steel and Composite Structures
    • /
    • 제50권2호
    • /
    • pp.217-235
    • /
    • 2024
  • Concrete-filled steel tubes (CFSTs) nowadays are widely used as the main parts of momentous structures, and its connection has gained increasing attention as the complexity in configuration and load transfer mechanism. This paper proposes a novel CFST pier-to-footing incorporating tube-confined RC encasement. Such an innovative approach offers several benefits, including expedited on-site assembly, effective confinement, and collision resistance and corrosion resistance. The seismic behavior of such CFST pier-to-footing connection was studied by testing eight specimens under quasi-static cyclic lateral load. In the experimental research, the influences on the seismic behavior and the order of plastic hinge formation were discussed in detail by changing the footing height, axial compression ratio, number and length of anchored bars, and type of confining tube. All the specimens showed sufficient ductility and energy dissipation, without significant strength degradation. There is no obvious failure in the confined footing, while local buckling can be found in the critical section of the pier. It suggests that the footing provides satisfactory strength protection for the connection.

충전원형강관을 이용한 모듈러 교각의 휨 거동 평가 (Evaluation of Flexural Behavior of a Modular Pier with Circular CFT)

  • 마향욱;오현철;김동욱;;심창수
    • 한국강구조학회 논문집
    • /
    • 제24권6호
    • /
    • pp.725-734
    • /
    • 2012
  • 모듈화된 급속시공 교량 구조물의 하부구조 형식으로 충전 원형강관을 이용한 교각 구조물을 제안하였다. 다수의 충전강관을 연결하여 표준화된 제품으로 생산하여 운반 조립할 수 있는 구조 상세와 연결 상세를 제안하였다. 제안된 구조상세와 연결상세를 반영한 모듈러 교각의 정적실험을 강축과 약축에 대해서 횡변위 조건으로 수행하였다. 단일 기둥으로 설계한 것에 비하여 모듈러 CFT 교각 시스템이 브레이싱으로 연결된 편심효과로 인해 5.23배 높은 휨강성을 나타내었고 휨강도도 6배 이상 증가하였다. 합리적인 설계를 위해서는 모듈러 CFT 교각을 프레임으로 모델링하여 응력 및 처짐 검토를 수행하는 것이 타당한 것으로 나타났다. 교각을 구성하는 기둥간의 간격 조정을 통해서 필요한 내하력을 확보할 수 있을 것으로 판단되고 설계를 위한 고려사항을 제안하였다.

박스형 강합성 교각의 내진 성능 평가를 위한 실험적 연구 (An Experimental Study on the Seismic Behavior of Box Type Concrete-Filled Steel Piers)

  • 서진환
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.381-388
    • /
    • 2000
  • The steel piers and the concrete-filled steel piers, in spite of reasonable strength, high ductility, small section, and fast construction, have not been considered as the alternatives to the RC piers even in the highly populated urban area where aseismic safety, limited space and fast construction are indispensably required. In this paper, a steel pier and 4 box type concrete-filled steel piers were tested with the quasi-static cyclic loading to estimate the ductility and the strength. Additional devices such as base rib, turn-buckle, and anchor bolted added at the to increase the ductility with minimum additional cost. The result showed that the concrete filled-in steel piers had higher energy absorbtion and strength than steel piers had, but also showed that slight overlooking in the design and fabrication could lead to the abrupt fracture just after small local buckling at the bottom.

  • PDF

CFT 교각 기초부의 거동특성 (Behavior of the Foundation of Concrete Filled Steel Tubular Pier)

  • 이하림;김희주;황원섭
    • 한국전산구조공학회논문집
    • /
    • 제24권5호
    • /
    • pp.491-498
    • /
    • 2011
  • 본 연구는 CFT 교각 기초부의 구조상세 개선을 목적으로 상용 유한요소해석 프로그램인 ABAQUS를 이용하여 축하중 및 횡하중을 받는 강재기둥 베이스플레이트 접합부의 전반적인 구조적 거동과 설계변수의 영향을 검토하고자 한다. 이를 위해 현행 교각 기초부의 설계기준을 분석하였고, 선행연구의 실험을 토대로 수치해석을 실시하여 해석기법의 타당성을 검증하였다. 검증된 해석기법을 이용하여 교각 기초부의 파괴형상 및 응력분포를 분석하였으며, 다양한 설계변수(베이스플레이트, 이형철근, 기둥의 강종 및 치수)가 전체 구조물에 미치는 영향을 비교분석하였다.

Cyclic and static behaviors of CFT modular bridge pier with enhanced bracings

  • Kim, Dongwook;Jeon, Chiho;Shim, Changsu
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1221-1236
    • /
    • 2016
  • Modular structures consist of standardized modules and their connections. A modular bridge pier is proposed to accelerate bridge construction. Multiple concrete-filled steel tubes (CFTs) using commercial steel tubes were chosen as the main members. Buckling restrained bracings and enhanced connection details were designed to prevent premature low-cycle fatigue failure upon cyclic loading. The pier had a height of 7.95 m, widths of 2.5 m and 2.0 m along the strong and weak axis, respectively. Cyclic tests were performed on the modular pier to investigate structural performance. Test results showed that four CFT columns reached yielding without a premature failure of the bracing connections. The ultimate capacity of the modular pier was reasonably estimated based on the plastic-hinge-analysis concept. The modular CFT pier with enhanced bracing showed improved displacement ductility without premature failure at the welding joints.